g-expansion principles for modular curves at infinite level

Ben Heuer

Abstract

We develop an analytic theory of cusps of the modular curve at infinite level le(pm)
and some lower level modular curves in terms of perfectoid parameter spaces for Tate
curves. We then prove various g-expansions principles for functions on perfectoid modu-
lar curves, namely that the properties of extending to the cusps, vanishing, coming from
finite level, and being bounded, can all be detected on g-expansions. As an application,
we show that there is a canonical tilting isomorphism Af, (poo)(e)fz = Xl/gwoc)(e)perf.
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1 Introduction

Let K be a perfectoid field extension of Q¥ and let X* be the modular curve of some tame
level T'(N) over K, considered as an analytic adic space. In the first part of this paper, we
carry out a detailed analysis of the geometry near the cusps in the inverse system of modular
curves with higher level structures at p. This complements in the case of dimension 1 results
of Scholze on the boundary of Siegel moduli spaces for abelian varieties of dimension > 2 in
[11], proved there using machinery like a perfectoid version of Riemann’s Hebbarkeitssatz,
which due to codimension 2 assumptions only apply for higher dimensional Siegel spaces.

Our way to study the boundary in the elliptic case is to develop a theory of analytic
Tate curve parameter spaces: These are moduli spaces of Tate curves, and in the simplest
case are rigid open discs D C Spa(K{q)) of radius 1, defined by the condition |q| < 1. For
the tame level modular curve X*, it is a consequence of a Theorem by Conrad [3] that for
any cusp ¢ of X'*, there is a canonical open immersion D — X* that sends the origin to
that cusps. It then follows essentially from the classical calculus of cusps after Katz—Mazur
[9] that for any cusp of the tame level modular curve X* there are Cartesian diagrams

To(p”, Z/p"Z) x D —— (Z/p"Z)* x D p —*1 D

J+ 0 | |

le(pn)(o)a _— Xli‘l(pn)(())a — X;U(pn)(o)a — X*(0)
canonical after a choice of p”-th root of unity in K.
We show that in the limit n — oo, these open subspaces give rise to perfectoid Tate
parameter spaces given by the perfectoid open discs Doy € Spa(K (¢'/?7)) defined by |q| < 1.
The above diagram then in the limit becomes a Cartesian diagrams of perfectoid spaces

Fo(p™) x Do —— 7 % D D b
X ey (00— X7 ooy (0)a —— &7 e (0) —— X7(0)

where I'o(p™) := {( 1)} € GL2(Zp) and I'o(p™) and Z, are perfectoid groups which are

profinite tilde-limits. By identifying the action of T'o(p) := {(: i) |c € pZ,} C GL2(Z,) on

Lo(p™) X Doc < A}, (0)a, one can deduce via GLy(Zj)-translations the following:

Theorem 1.1. 1. Consider the right action of Z, on the perfectoid space GLa(Zy) X D
defined by (v,q) -h — (v(£9) ,ql/poo(;}oo). Then the quotient (GLo(Zy) X Do)/ Zy
exists as an adic space. Let ¢ be any cusp of X*. Then the pullback of the corresponding
Tate parameter space D — X* along the projection Xli‘(poo) — X* is of the form

(GL2(Z,) x Do) /2, —— D

I |

Moy —

where the morphism on top is projection to the second factor. The morphism on the
left is canonical after a choice of (e and is then GLa(Z,)-equivariant for the natural
left action on (GL2(Z,) X Do)/ Zy induced by letting GL2(Z,,) act on the first factor.



2. The map mgr : AL — P! restricts to (GL2(Zp) X Do) /Zy — PY(Z,) given by

(p>)
((28),q) — (b:ad).

In other words, the following diagram commutes:

(GLg(Zy) X Do) /Zy — PH(Zy)

I |

* THT 1
XF(pOO) — P

In particular, the Theorem implies that for any cusp ¢ of X'*, the cusps of le(p(x,) — X
over ¢ form a closed profinite subspace GLy(Zp)/Zp — AP,y For each v € GLy(Zyp)/Zyp,
we will denote by ¢, the cusp of le(poo) defined by specialising at v : Spa(K) — GL2(Zy)/Zy.

The Tate parameter spaces give a way to talk about ¢g-expansions of functions on modular
curves. They can be useful when working with modular curves at infinite level, as they often
allow one to extend constructions which are a priori defined only away from the cusps, for
instance maps defined by the moduli interpretation, to the compactifications. Explicitly, we
for instance have the following immediate consequence:

Corollary 1.1. Let cg,...,c, be a collection of cusps of X'* such that each connected
component of X* contains at least one ¢;. For each ¢; let S(¢;) € GLo(Z,)/Zy be a dense
subset. Then a function f on Xppe) can be extended to a function on Xli‘(poo) if and only
if for all ¢; and all v € S(c;), the q-expansion of f at the cusp ¢;~ is already contained in
Ox[[d"*7[1/p] € Ox((¢*/*7)[1/p]. In this case, the extension of f is unique.

In the second part of this article we show that, in a similar fashion, one can use the
Tate parameter spaces to prove various g-expansion principles which are often useful when
working with functions on infinite level modular curves, like modular forms:

Corollary 1.2 (g-expansion principle I: detecting vanishing). Let co, ..., ¢y be a collection
of cusps of X'* such that each connected component of X* contains at least one c;. Then
restriction of functions gives injective maps

O(XE, (o) (€)a) = [T Ox[la"/? " N[L/p]

=1

O (oo ()a) = [ Mapeio (Z5, Ok [[g* P~ )[1/p]

=1

O(Xf ey (€)a) = [ [ Mapers (Do (0™), O [[¢" /P 11)[1/p].

i=1

Corollary 1.3 (g-expansion principle II: detecting the level). Let f € O(Xli‘o(pm)(e)a) be a
function on Xli‘o(pw)(e)a. Then for any n € Z>o U {oo}, the following are equivalent:

1. f is the pullback of a function on Xli‘o(pn)(e)a.
2. The g-expansion of f at every cusp is already in O[[¢*/?"]][1/p] C Ox[[¢*/*~1)[1/p].

3. On every connected component of Xli‘o(pn)(e)a there is at least one cusp at which the
g-expansion of f is already in O [[g"/""]][1/p] C Oxc[[g"*~][1/p].



Proposition 1.4 (g-expansion principle III: detecting boundedness on the ordinary locus).
A function f € O(Xf (,)(0)) = S is contained in S° = (’)+(lel(poo)(0)) if and only if its
q-expansion is in Ok[[¢*/?"]]. The analogous statement for X;;(pm)(O)pcrf = Spa(S”, 5°°)

is also true: An element of S° is in S°° if and only if its q-expansion is in Oy [[¢*/P” ).

Finally, we give an example of an application of Tate parameter spaces and the ¢-
expansion principle of extending to the cusps, which we are interested in for applications to
modular forms: It is an extension of a result from [11], 1I1.2.5, proved there for the Siegel
space paramatrising abelian varieties of dimension g > 2, to the case g = 1 of elliptic curves:

Theorem 1.2. 1. There is a canonical isomorphism X7 (e)Pert which

Ty (p>e
is L,y -equivariant and makes the following diagram commute:

b~ *
(€ = Vi)

XL, (o) (o = Aoy (P

! !

X5, oy (€ — X7 (e

where the isomorphism on the bottom line is the one from [11], Corollary II1.2.19.

2. The cusps of X () (€)a and X{;(poo) (€) correspond via the isomorphism in 1. For any

pair of cusps, the corresponding Tate parameter spaces fit into a commutative diagram

Ly x Doy —— AF, (o) ()
H H

Ly x Dl — X[

Ig(p=°) (E)pcrf

where D' is the open rigid unit disc over K° and D! is its perfection.

A third application of the Tate parameter spaces at infinite level can be found in [2].
We remark that this article is a prequel to the paper ”tilting equivalences of modular
forms” [6] about a perfectoid perspective on modular forms at the boundary of weight space.
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2 Tate parameter spaces for finite level modular curves

Throughout let p be a prime. Let K be a p-adic perfectoid field extension of Qp¥°.

Let us briefly recall some notation from [11] for adic and perfectoid modular curves: Let
N be some integer > 5 coprime to p. Let X be the modular curve of some tame level I'P
at N over K and let X* denote its compactification. For simplicity we shall always assume
that K contains a primitive N-root of unity, so that X and X* both decompose into ¢(N)



disjoint irreducible components. When in the following we consider the modular curves
over a ring of definition R other than K, we shall denote it by Xp, and similarly for the
compactification. In particular, there are the integral models Xo, and X . We denote
by X and X* their respective p-adic completions. We use calligraphic letters to denote the
adic analytifications X and X* of X and X* their adic generic fibres — this is the only way
in which we deviate from the notation in [11], where X denoted the good reduction locus,
which we shall denote by ).

For any of the classical Katz-Mazur level structures I' = T'o(p™),T'1(p"),T'(p"), n € N,
we denote by Xr — X the representing moduli scheme. Similarly, there are X{* — X*, and
adic space Ar — Xr, Af as well as Yr — V. We remark that these spaces have a moduli
interpretation in the adic category:

Lemma 2.1. Let S be an honest adic space over (K,Og). Then
HomAdic(S, XF) = X(OS(S))

In particular, the S-points of X1 are in functorial correspondence with isomorphism classes
of elliptic curves over Og(S) with tame level structure I'P and level structure T' at p.

Proof. The moduli scheme Xr over K is an affine curve ([9] Corollary 4.7.2), say X =
Spec(A). By the universal property of the analytification Yr = X" we then have

Homaaic (S, Xp") = Homprs (5, Xr) = Xr(0s(S5))
where the last step is the adjunction of Spec and global sections for locally ringed spaces. [

Using local lifts Ha of the Hasse invariant one defines an open subspace X*(e) C X™* cut
out by the condition that |Ha| > |p|°. Following [11], there is a canonical integral model
X*(e) — X*. As a general means of notation, for any adic space S — X'* we shall write

S(e) := 8 xax X*(e)

for the open subspace of S that is the preimage of X*(¢), and similarly for the integral models.
In particular, for any of the classical Katz-Mazur level structures T' = T'o(p™), T'1 (p™), T'(p")
the modular curve A — X* restricts to a morphism Aji(¢) — X*(¢). We note that the
open subspace X*(0) is precisely the ordinary locus of X* (ie the locus of good ordinary or
semistable reduction). We therefore say for the elliptic curve represented by )(e) that they
are e-nearly ordinary.

By the theory of the canonical subgroup, the forgetful morphism &y (e) — &A™ (e) has
a canonical section. We denote by X;O(p)(e)c the image of this section, that is the com-
ponent of A} (p)(e) that parametrises the T'g(p)-structure given by the canonical subgroup.
This is called the canonical locus. We denote its complement by A} (p)(e)a and call it the
anticanonical locus. For any adic space S — Xl:ko(p) we denote by

S(€)g =5 XX o Xffo(p)(c)a

the open subspace that lies over the anticanonical locus. For any adic space S with an
elliptic curve E over Og(S), we shall call the data of a I'-level structure that corresponds to
a point of Yr(e), a T'y-level structure. For instance, a T'g(p™),-level structure is the data of
a locally free subgroup scheme D,, C E[p"] that is fppf-locally cyclic of rank p".

Finally in this section, we recall that for any n € N, the transformation of moduli functors
that sends an elliptic curve E together with an I'(p™),-structure D,, to the elliptic curve
E/D,, induces an isomorphism

Xry(pry(€)a — X(p~"€)



that is called the Atkin-Lehner isomorphism. The inverse is given by sending E with canon-
ical subgroup C,, to the data of E/D,, with Tq(p™),-structure E[p"]/C,,. The Atkin-Lehner
isomorphism uniquely extends to the cusps for all n, and for varying n the resulting isomor-
phisms fit into a commutative diagram of towers

where in the bottom row, the morphism F' is the ”Frobenius lift” defined in terms of moduli
by sending E to E/C;. The resulting tower from above is called the ”anticanonical tower”.

It is a crucial result of [11] that the anticanonical tower becomes perfectoid in the inverse
limit: More precisely:

Theorem 2.1. There is an affinoid perfectoid space leo(poo)(e)a such that
Ary (pee) (€)a ~ UM A (0 (€)a
neN

Since the forgetful morphisms X7 . (€)a — AR ,u)(€)a are finite étale (Z/p"Z)*-
torsors, even over the cusps, one immediately obtains in the inverse limit an affinoid per-
fectoid space A} wo)(€)a ~ lim XY (pny (€)a together with a forgetful map Xy wc)(€)a —
XY (py (€)a that is a pro-étale Z torsor. Similarly, for full level I'(p™), one obtains an affi-
noid perfectoid space le(poo)(G)a together with a forgetful map that is a pro-étale I'o(p™)-
(€)a = AT

torsor A} (€)o where we set:

(r>) p>)
Definition 2.2. For any m € NU {oo}, let To(p™) = {(5 %) € GL2(Z,) | c =0 mod p™}.

All in all, we have a tower of morphism
A oo (€a — A, oy (o — AT ey (o — XF ) (€)a

which is a pro-étale I'g(p)-torsor away from the boundary, but not globally since there is
ramification over the cusps in A7 ) (€)a = AL () (€)a-
We also recall that at infinite level, there is the Hodge-Tate period map

THT : Xff(poo)(e)a — P!,

which is the restriction of the Hodge-Tate period map to the anticanonical locus. In terms of
moduli (away from the cusps) this sends any point corresponding to an elliptic curve E over
an algebraically closed field C' with a trivialisation o : Z2 — T, E to the quotient of C? given
by the Hodge-Tate map 7,E ® C — wg via the identification C? = T, E ® C induced by a.
This moduli description on points ”geometrises” to a natural isomorphism of line bundles
mhrO(1) = ¢*w over le(poo)(e)a where w is the usual automorphic bundle on Xli‘o(p)(e)a.

2.1 Analytic Tate parameter spaces and cusps

In this section we recall the theory of the universal rigid analytic Tate curve around the
cusp, as developed by [3]. The only two differences are that we use I'; (V) instead of T'(N),
and that we work with analytic adic spaces. In particular, instead of the generalisation of
Berthelot’s functor constructed in §3 of loc. cit. we may use the adic generic fibre functor.



Throughout let n € Z>¢. We consider the modular curve Xli‘o () Note that this includes
the case of the tame level modular curve X'* = leo 1)> & case we are also interested in. Recall
that we assume that K is a perfectoid field that contains all N-th unit roots, and therefore
the cusps of X5 . are a disjoint union of Og-points. Let ¢ : Spec(Ok,To(p™)) —
X(*Dx,l“o(p") be any of the cusps, then completion along the cusp results in a map

c: Spf(Ok|lq]]) = X(*DK,Fo(p”)

where Ok|[q]] is endowed with the g-adic topology. Upon m-adic completion, this gives rise
to a morphism

¢ : Spf(Ok|[[ql]) — xlfo(p")

where now Ok|[q]] is endowed with the (p, ¢)-adic topology. We note that this morphism
restricts to Spf(Ox[[¢]]) — X*(0) since the supersingular locus is disjoint from the cusps.
On the p-adic generic fibre, we obtain a morphism of analytic adic spaces over K

f’? N D = Spf(OK[[Q]]v (wa Q))gd - Xf‘ko(l)n)

The space D = Spf(Ok|[q]], (w, ¢))3* is the adic open unit disc over K. This is a rigid space,
and to fix notation let us recall that its global sections can be written as

Op(D) = Zanq” € K[[q]] such that |a,|¢" — 0forall0 < g <1
n>0

The relation of Spf(Ok[[¢]], (w,q)) and D can be described in more classical terms:
Namely, the rigid space D is the one associated to Spf(Ok][[q]], (w, q)) via Conrad’s gener-
alisation of Berthelot’s rigid generic fibre construction, [3] Theorem 3.1.5 (we need Conrad’s
generalisation since K might not be discretely valued and §7 of [5] only works for locally
noetherian formal schemes).

Proposition 2.3 (Conrad, [3] Theorem 3.2.6). The morphism f, : D — XY (o) Of rigid
spaces is an open immersion that identifies D with an open neighbourhood of the cusp.

Proof. This is the analogue of [3], Theorem 3.2.8 for I'(NV) replaced by I'1(IV): Since the
cusps are a disjoint union of sections, this is a direct consequence of Theorem 3.2.6. O

Remark 2.4. In fact, [3], Theorem 3.2.6 says much more: It also gives a universal analytic
Tate curve over D, and a moduli interpretation of the cusp in terms of generalised elliptic
curves.

Lemma 2.5. Denote by w the map of locally ringed spaces w : D — Spec(Z(N)[[q]] ® Ok)
induced by the natural inclusion Z(N)[[q]] ® Ox — Op(D). Then the following diagram of
locally ringed spaces commutes:

Spec(Z(N)([gll ® Ox) ——= X5, 1

d T

cy N
D AT, (o)

™)

In particular, the morphism c,, is the one induced by the morphism of locally ringed spaces
D — Spec(Z(N)[lg]] ® K) = X} 1 (pny Via the universal property of the analytification.



Proof. 1t suffices to prove this for Ok replaced by Z(N), the general case follows by base
change. Then we can consider all appearing formal schemes as adic spaces in the sense of
Huber. The morphism f : Spf(Z(N)[[q]] ® Ox) — Spec(Z(N)[[q]] ® Ox) = X7 n ry )

then completes to a morphism f of adic spaces, and the universal property of the adification
gives a commutative diagram of locally ringed spaces

Spec(Z(N)[[al)) —L— X2y rogm)

| I

a f *a
Spf(Zy,[Cn][lq]]) ¢ — :{Zp([iCN],Fo(p”)

The Lemma follows upon taking the fibre over Spa(K, Ok ) — Spec(Ok). O
We thus have the following moduli interpretation of D.

Corollary 2.6. Let S be an honest adic space over Spa(K,Ok) and let ¢ : S — Xﬁ:(pn)
be a morphism corresponding to an elliptic curve E over Og(S) with tame and T'o(p™)-level
structure. Then ¢ factors through the punctured open unit disc D — Xp () around the cusp
¢ if and only if E is a Tate curve with level structure corresponding to ¢, and qg € Og(S)

is topologically nilpotent, that is v, (qg) is cofinal in the value group for all x € S.

Proof. If p : § — Xlio(pn) factors through D < X, (pn), then it factors through the map

Spec(Ok (q)) = X7 (pm)
parameter ¢g € Og(S) as the image of ¢ € Ok ((q)) on global sections. This is topologically
nilpotent because ¢ € Op (D) is topologically nilpotent.

Conversely, assume that F is a Tate curve such that qg € O(S) is topologically nilpo-
tent. It suffices to consider the case that S = Spa(B, B") is an affinoid adic space over
Spa(K,Ok). The condition that ¢g is topologically nilpotent then implies that for any =
there is n such that |gg(x)|™ < |w|. Since S is affinoid and thus quasicompact, we can find
n that works for all x € S. Similarly, since E is a Tate curve, the element qg € B is a unit
and we thus have 0 < |gg(x)| for all x € S. Again by compactness, we can find m such that
|w|™ < |qg|. But then ¢%/w, @™ /qr € BT and there is a natural morphism of affinoids

(K{q,q"/w,@"™ /q), Ok {q,q" /=, @™ [q)) = (B,BT), q qz

by Lemma 2.5. Consequently, E is a Tate curve and we obtain a

through which the map Ok ((q)) — B defining the Tate curve structure factors. Since the
algebra on the left defines an affinoid open of D, this gives the desired factorisation. O

Remark 2.7. Consider the non-archimedean field (L, Or) := (Ok((¢))[1/w], Ok ((q))) en-
dowed with the w-adic topology. Then Spa(L,Op) is just a point {v, }, and clearly g is not
topologically nilpotent. We conclude that the natural morphism

Spa(L,Or) — Spec Ok ((¢))

does not factor through D even though it corresponds to a Tate curve. Instead, this Tate
curve has good reduction and therefore the point lies in the good reduction locus X C X*.

2.2 Classification of points of the adic space X*

Our next goal is to prove a moduli-theoretic decomposition of X* and X**. The same
classification works for Xffo(pn), and in fact for any higher levels, but we only treat the case
of X* for simplicity.



To motivate the result, recall that we have an open subset X C X'* which parametrises
elliptic curves with good reduction, as well as open subsets D C X" around each cusps.
Both of these types of open subsets arises as admissible open subsets of A* considered
as a rigid space, and in fact they cover the rigid space A'* set-theoretically: Indeed, it
follows from the analogue of [5], Lemma 7.2.5 in the setting of [3] that on the level of the
underlying topological spaces, the loci X and D inside X* are precisely the preimages of
Xoy /= C X(*QK/w and Cusps(I'(N)) C XE‘QK/W, respectively, under the specialisation map
sp : |X*| = | X0, /w|.- This cover, however, is not admissible (cf 7.5.1 of [5]). In terms of
adic spaces, this hints at that we are missing rank-2-points of X*. This is made precise by
the following classification of points of A'™.

Theorem 2.8. Let x € X* be any point, then we are in either of the following cases:
(a) © € X* is contained in the good reduction locus
(b) x € D — X* is contained in one of the Tate parameter spaces around the cusps
(c) x € X*\ X is of rank > 1 and its unique height 1 vertical generisation x' is in X.

When we denote by j the global function on X" induced by the morphism j : X — AL,
then the above are respectively equivalent to

(a’) (=) <1
(b’) |7(z)| > 1 and its inverse is cofinal in the value group
(¢’) |§(z)| > 1 and its unique rank 1 generisation x’ has |j(z')| = 1.

Proof. The space X" is analytic, hence the valuation v, is always microbial. This means
that = has a unique generisation =’ of height 1, so statements (c) and (¢’) make sense.

The case of the cusps is clear, so let us without loss of generality assume that x € X.

We start by proving that (a) and (a’) are equivalent. Recall that X is the preimage of A!
under the morphism of Og-schemes j : X* — P!. Upon formal completion and passing to
the adic generic fibre, j becomes j% while A C P! is sent to the ball B}(0) C At-an C plan
of valuations with |j(z)| < 1. Since the adic generic fibre of the completion of X C X* is
x99 C X*, this shows that X9 is precisely the preimage of B(0) under j* : X — Abam,

Next, let us prove that (b) and (V') are equivalent. We can always find a morphism

re s Spa(C,CT) — X

where (C,C7) is a complete algebraically closed non-archimedean field, such that z is in the
image of r,.. It thus suffices to show that r, factors through some D — X*. By Corollary 2.6
it suffices to show that (b’) holds if and only if the elliptic curve E over C that r, represents
is a Tate curve with nilpotent parameter qg € C.

The image of j in C' is precisely the j-invariant jg of E. Since in a non-archimedean field
the elements with cofinal valuation are precisely the topologically nilpotent ones, condition
(b’) is equivalent to jp # 0 and jp' being topologically nilpotent. We can now argue
like in the classical case of p-adic fields to see that this is equivalent to E being a Tate
curve with gg topologically nilpotent: If E is a Tate curve with qg topologically nilpotent,
then jg = 1/qg + 744 4+ --- # 0 has valuation |jg| = |1/gg| in C and thus jg satisfies
(b’). To see the converse, recall that in the formal Laurent series ring Z((g)) the formula
j(q) = 1/q + 744 + 196884¢> + . .. reverses to

q(G7Y) = 7+ 744572 + 75042052 + - € Z[[ Y]



If now jgl is topologically nilpotent, the above series converges in C' and we obtain a
topologically nilpotent element g € C* with jg = 1/qg + 744 + --- = j(qg). The Tate
curve E,,, over C thus has the same j-invariant as F, and since C' is algebraically closed we
conclude that E = Tate(qg). Thus E is a Tate curve with topologically nilpotent parameter
gr € C, as desired. This shows that (b) and (b’) are equivalent.

Next let us show that (c¢’) holds if and only if (a’) and (b’) don’t hold. Recall that we
always have a unique height 1 vertical generisation 2/. Clearly |j(x)| # 0 if and only if
|7(2")] # 0, and if in this case |j(x)|~! is cofinal then |j(z)|~! is cofinal. This implies that
(b’) and (c¢’) can’t hold at the same time. On the other hand, if |j(x)| > 1, then either
l7(z")] = 1, or |j(2/)] > 1 in which case |j(2')|7* < 1 is cofinal because v,s has height 1.
This shows that if |j(z)| > 1 then we are either in case (b’) or in (¢’).

It remains to prove that (c) and (c¢’) are equivalent. By the equivalence of (a) and (a’)
we know that z ¢ X is equivalent to |j(z)| > 1, and that 2’ € X is equivalent to |j(z’)| < 1.
Since |j(x)] > 1, the generisation satisfies |j(z')] > 1, and therefore |j(z')] < 1 implies
|7(z")] = 1. This finishes the proof of the Theorem. O

Example 2.9. Let us work out an example for an elliptic curve corresponding to a point
of type (¢): Let R>o x 7% be the totally ordered group where v is such that x < y < 1 for
all z € Roy. Consider the field L = Ok ((¢))[1/w] equipped with the valuation

. 1 R0 z nq" > nly".
21— : Ok ((9)[1/@] = RZ* x 4% > "ang max |a, |y
Denote by mg the maximal ideal of Ok, then the valuation ring of x;- is

OZ:{ i anq"

n>>—oo

anEOKforaHHZOandanEmeoralln<0}.

Indeed, we have v1- (305 ang™) < 1 if and only if |a,|y" < 1 for all n. For n > 0 we

have |a,|y™ < 1if and only if |a,| < 1, that is a,, € Ok. For n < 0, on the other hand, 4" is

"infinitesimally” bigger than 1, so that |a,|y™ < 1 if and only if |a,| < 1, that is a, € mg.
The Tate curve Tate(q) over L with any of its I'(IV)-structures gives rise to a map

t;- : Spa(L,0f) — X*

which we claim lands neither in X’ nor in any of the Tate parameter spaces D C X'*. Indeed,
the j-invariant of T'ate(q) is
j=1/qg+ 744+ - ¢ Of (1)

which is not contained in @] by the above description. This shows that Tate(q) does not
extend to an elliptic curve over Oz. On the other hand, ¢ is not nilpotent in L and so the
map t does not factor through any of the open immersions D — X*.

Theorem 2.8 explains this as follows: We have

Spa(L,0F) = {z = 2,-,2'}
where 2’ is the unique height 1 vertical generisation of = given by
' Ok ((9)[1/@] = RZY, Y ang” — maxan|
with valuation ring Or, = O%((g)) containing OF . We now see from equation 1 that
(@) =71 < 1 while |j(a")] = 1.
This shows that ¢t~! sends z to one of the points of type (c) in Theorem 2.8, while its

generisation 2’ goes to the point of X defined by Remark 2.7.
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2.3 Tate parameter spaces in the anticanonical tower

Next, we want to look at the behaviour of the Tate parameter spaces in the anticanonical
tower. For this we first recall the situation at the cusps on the level of schemes:

Consider the morphism f : Xli‘o(p) — X™*. Over each cusp of X* there are precisely two
cusps of Xli‘o(p): One is called the étale cusp, it corresponds to the I'g(p)-level structure
tp € T[p] on the Tate curve. The other is the ramified cusp, it corresponds to the level
structure (¢*/?) C T[p]. The names reflect that Xfio(p) — X* is étale at the one sort of cusps,
but is ramified at the other. More precisely, over the étale cusp the morphism induced on
completions is given by

Oxllall = Okllall,a — g

whereas over the ramified cusp it is

Okllgll = Oklldll.q — ¢”

For higher level structures T'o(p™), the curve X7, o) X* has more cusps of different

degrees of ramification d = p* with i = 0,...,n, and corresponding morphisms on comple-
tions given by g — ¢¢. There is, however, exactly one étale cusp, corresponding to the level
structure p,», and exactly one purely ramified one, corresponding to <q1/ p">. Relatively over
the morphism X7\ .. — X/ . all the cusps upstairs lie over the étale cusps of X7 , .,

Fo%p ) 7. To(p e ; To(p)
except for the purely ramified one, which lies over the ramified cusp of X;O(p).

We note the following consequence for the Tate parameter spaces:
Proposition 2.10.

1. The cusps of Xli‘o(pn)(e)a are precisely the purely ramified cusps of leo(p")' Let ¢
be any such cusp. Then for any honest adic space S over (K,Ok), the S-points
of fl¢) : D < Xry(pry(€)a correspond functorially to Tate curves over O(S) with
topologically nilpotent parameter g € O(S), a I'(N)-structure corresponding to ¢y and
a choice of p™-th root of q defining a subgroup (¢'/?") C Tate(q).

2. The forgetful map Xli‘o(pn)(e) — Xli‘o(pn,l)(e) gives a bijection of the cusps of both
spaces. For any cusp of Xli‘o(pn,l)(e) and its corresponding cusp of leo(pn)(e), the
Tate parameter spaces associated to these cusps fit into Cartesian diagrams

D%D

l l

Aoy (o — AL 1) (Da-

Proof. Since the canonical subgroup of the Tate curve is given by p, C T[p|, the cusps
contained in the anticanonical locus are precisely the ramified ones. But the cusps of X{io(pn)
over the ramified cusps of X7, (p) BT€ precisely the purely ramified ones. This proves 1.
The diagrams in 2 commutes because by construction it is the generic fibre of a commu-
tative diagram of formal schemes. Since the morphisms are open immersions, it suffices to

check that it is Cartesian on the level of points. But this follows from Lemma 2.6. O

2.4 Tate parameter spaces of A7 . (€)a

The aim of this section is to describe Tate parameter spaces D — Xli‘l (™) like in Theorem 2.3.
Since the integral theory of cusps for 'y (p™) is complicated (see §4.2 of [4] for a thorough

11



discussion), Theorem 4.16 of [3] does not apply immediately. Instead we shall use ad hoc
methods to deduce the desired description from the case of I'g(p™). We shall restrict attention
to the cusps of AT (pn)(e)a.

Proposition 2.11. Let ¢ be a cusp of X* and denote by f : D — leo( (€)q the corre-

sponding Tate parameter space.

p")
1. There is a Cartesian diagram of (Z/p"Z)* -equivariant maps

(Z/p"Z)* x D ——— D

I L

kal(pn)(€>a —_— leo(pn)(e)a.

2. The projection 7 : (Z/p" 1 Z)* — (Z/p"Z)* induces a Cartesian diagram

(Z/p" L)% x D —— (ZJp"Z)* x D

| |

AL, i1y (€a = A () (€)a

where the morphism on top is given by (a,q) — (7(a), ¢P).
Proof. We first construct a section D — Xl’il(pn): The purely ramified cusp corresponds to
the choice of (¢'/P) C T(g?"N) as a I'y(p")-structure. This can be lifted canonically to the
'y (p™)-structure given by the generator ¢'/? of (¢'/P), defining a canonical lift

Spec(Z[1/N, ¢w]lg]]l ® K)

Xbypmy = Xym):

The natural morphism D — Spec(Z[1/N, (n][[ql]©K) — X} ,n) from Corollary 2.5 together
with the universal property of the analytification now give rise to a section

kal (p™) Xl:ko ()"

Since Xf o) Xli‘g(pn) is a Galois torsor with group (Z/p"Z)*, this already implies that
the natural morphism (Z/p"Z)* x D — X\ (,n XX )

The second part follows from the fact that the morphism Xy .y — A7 0y

with respect to the morphism of Galois groups (Z/p"™Z)* — (Z/p"Z)*. O

D is an isomorphism.

is equivariant
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2.5 Tate parameter spaces of X;(pn)(e)a

Next, we look at what happens with the cusps in the transition A7) (€)a = &7 (,n)(€)a-
Let us fix notation for the left action of I'y (p", Z/p"Z) on Xy, in terms of moduli: For

any v € I'y(p",Z/p"Z) it is given by sending a trivialisation (Z/p"Z)? = E[p"] to

(Z/p"Z)* = (Z/p"L)* =+ E[p"]
where vV = det(g)y~!. Here the inverse is necessary to indeed obtain a left action, and
the additional twist by det(g) is necessary to ensure that action on the fibres of the map
Xp iy (€)a = AT (ny(€)a I8 given by matrices of the form (g ) rather than (&5).

Definition 2.12. For any 0 < m < n € N, we denote by I'o(p™,Z/p"Z) C GLa(p™,Z/p"Z)

* ok

the subgroup of matrices which are of the form () with ¢ = 0 mod p™. We similarly
define T'y(p™, Zy).

The forgetful map X7, — X7, ) is given by reducing (Z/p"Z)* = E[p"] mod p to
(Z/pZ)* =+ E[p] and sending it to the subgroup generated by (1,0). Consequently, the
action of T'g(p,Z/p"Z) leaves the forgetful morphism X7, — X7 ) invariant. We see
from this that the action of T'g(p, Z/p"7Z) fixes the forgetful map to AT, (> and thus restricts

to an action on A7 . (€)a-

Definition 2.13. Denote by I'y (p", Z/p"Z) C T'o(p, Z/p"Z) C GLo(Z/p™Z) the subgroup of
matrices which are of the form (§ 7). These are precisely the matrices for which the action

on Xli‘(p")(e)a commutes with the forgetful map to Xli‘l (pn)(e)a.

Proposition 2.14. Let ¢ be a cusp of X* and denote by f : D — leo(pn)(e)a the corre-
sponding Tate parameter space.

1. Depending on our chosen primitive root (yn, there is a canonical Cartesian diagram

To(p",2/p"2) x D ——— D

I |

P (o —— A ) (€a-

where the map on the left is To(p™, Z/p"Z)-equivariant for the trivial action on D.

2. Let ¢ be a cusp of Xl’fo(p”)(e)a and let cy be the cusp of Xli‘(p,,L)(O)a over ¢ determined
by v = (8 3). Then for any honest adic space S over (K,Ok), the S-points of the

map f(cy) : D < Xppny(€)a correspond functorially to Tate curves with topologi-
cally nilpotent parameter ¢ € O(S), a I'1(N)-structure determined by c, and the basis
(qd/”",q_b/pann) of E[p"], where q'/P" is the p"-th root of q determined by c.

3. The morphisms 7 : To(p" 1, Z/p" 1 7Z) — To(p" T, Z/p" 1 Z) induced by the reduction
maps GLa(Z/p"17Z) — GLo(Z/p"Z) give rise to a Cartesian diagram

FO(pn+1aZ/pn+IZ) XD —— FO(pnvz/an) x D

l l

K rsny(©a > (€
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where the morphism on top is given by (v, q) — (w(7), ¢P).

Proof. 1. Recall that over the purely ramified cusp there is a canonical splitting

Spec(Z[1/N, ¢, Cn][lal] ® K)

</’///// X*l

Xli( Ti(p™)

™)

constructed as follows: As we have already seen, there is a canonical I'; (p™)-structure
given by the generator g of (q) C T[p"]. If T is the Tate curve T = T(¢”" ") over
Z[1/N,(n]((q)), the Weil pairing gives a pairing e,n : T[p"]|xT[p"] — ppn. Specialising
the Weil pairing at ¢ € T'[p"™], we obtain an isomorphism e(g, —) : C;, — ppn where C,,
is the canonical subgroup of T'. The preimage of (,» under e(q, —) gives the desired
second basis vector of T'[p™]. This defines a canonical I'(p™)-structure on T'[p"], which
via normalisation gives rise to the morphism in diagram (1).

The universal property of the analytification then gives rise to a map g : D —
Xl’f(pn) (€)q which gives the Cartesian diagram in 1 using that Xli‘(pn)(e)a — leo(p") (€)a
is a Galois torsor with group To(p™, Z/p"Z).

2. The cusp label 1 € To(p", Z/p"Z) corresponds to the basis (¢*/?", Cpr ). The action by

v =(a}%) sends this to
n d/p™
(_dbg) (q;:: ) = <q—Z/p:C;”)
40y =

where (% %) =~V. This gives the desired basis.

*

3. This follows from Lemma 2.10 since Xff(pn) — Xr(pn—l) is equivariant via . O

We can now fit all descriptions of Tate parameter spaces together for a complete descrip-
tion of Tate parameter spaces at finite level.

Corollary 2.15. Let ¢ be any cusp of X* and let D — X* be its Tate parameter space.

1. Depending on our choice of (pn € Ok, there is a canonical diagram

Lo(p", Z)p"Z) x D —— (Z/p"Z)* x D p —171 D

It 0 | |

X;(I’")(E)a E— XFI(I)")(E)(L — leo(p")(e)a e X*(C)

of Cartesian squares, where the map on the top left is induced by the map
Lo(p", Z/p"Z) — (Z/p"Z)*, (§])— d.

Proof. The Cartesian diagram on the left exists as a consequence of 2.14 together with the
fact that Xli(pn) — Xli‘l(p") is equivariant with respect to the map (g g) — d. The square

in the middle is Proposition 2.11, the square on the right is Corollary 2.10.(3). O

Definition 2.16. In the situation of the Proposition, let v = (‘; Z) e To(p™,Z/p"Z). Then
specialising ¢ : To(p™, Z/p"Z) x D — Xl’f(pn)(e)a at the point of Tg(p™, Z/p"Z) defined by
~ defines a morphism that we shall denote by ¢(v) : D — Xli‘(pn)(e)a. By equivariance, we
have for v € Ty (p™,Z/p"7Z)

o(Yv) =~ 0(). (2)

14



2.6 The action of I'y(p) on the cusps of A} . (€)a

While Proposition 2.14 describes the T'o(p™, Z/p"Z)-action on the Tate parameter spaces
of Xli‘(pn)(e)a, this space has an action of the larger group I'g(p,Z/p"Z). While the action

of To(p™,Z/p™Z) just permutes the different copies of D at different cusps, the action of
To(p, Z/p"Z) has a non-trivial effect on the Tate parameter space, because it also takes into
account isomorphisms of Tate curves induced by sending ¢ — g(p», as we shall now discuss.
Proposition 2.17. Over any cusp ¢ of X*, the T'o(p, Z/p"7Z)-action on Xl’f(pn)(e)a restricts
to an action on ¢ : To(p", Z/p"Z) X D — le(pn)(G)a where it can be described as follows:

Equip To(p,Z/p"Z) x D with a right action by pZ/p"Z via (v,q) — (v(}9), ;%Nq), then
(Lo(p,Z/p"Z) x D)/(pL/p"Z) = Lo(p",Z/p"Z) x D

and the left action of To(p, Z/p"Z) is the natural left action induced on the quotient.
Ezplicitly, for any v1 € To(p, Z/p"Z), the action is given by

4! Fo(pnvz/pnz) x D l> Fo(pn,Z/an) x D

__c3
Yo, q (det(”(;‘)/ds e ) N

az b3

where v3 = (C3 dg) =1 Ya.

Proof. Recall that the reason for the pull-back of D — Xli‘o ) to Xli‘(pn) being of the form
Lo(p",Z/p"Z) x D even though &Xp(,n) — & (p) has larger Galois group I'o(p, Z/p"Z) is that
in the step from X* to leo(pn)(e)a the isomorphism D — D, q — Cz’jnq for any h € Z/p"Z

induces an automorphism of the Tate curves T(g?" ™) that sends the anti-canonical T'o(p™)
level structure (¢"V) to (¢"N¢™). For the action of T'o(p, Z/p"Z), this means the following:

Consider the Tate parameter ¢(id) : D < le(pn)(e)a corresponding to id = (39),
that is to the isomorphism « : (Z/p"Z)? — Tate(q?"N)[p"] that sends (1,0) — ¢~ and
(0,1) — (pn. Then the action of y1 = (} 9) sends this to the isomorphism « o~ defined
by (1,0) = ¢,'g™ and (0,1) + (pn. The isomorphism D — D, g — ¢,./"/"q identifies this

with the basis (g, (p»). We see from this that the following diagram commutes:

»(id)

<qN> b XF(p")(e)a
l qHC,}fL/NqJ 'yli
_ ° (id)
<Cp"th> — D L) XF(pn)(E)a.

We have thus computed the action of (1) on the component of T'o(p™, Z/p"Z) x D defined

by (§9), namely we have v1¢(id) = ¢(id) o (¢ — Cp_nh/NqN)

In the general case, one can decompose any v = (‘; Z) €lo(p,Z/p"7Z) as

7= (20) = () (at) 3)

Combined with the equivariance of ¢ under T'y(p™,Z/p"Z), we can compute from this the
action of To(p, Z/p"Z): Let 1, 72,73 be like in the statement of the Proposition, then

mMe(r2) =nree(d) = 1p(id) = (d“(wo‘”’)/da Si) (ea/as 1) 2(id)
= (dCt(’Yg)/ds Zz) o(id) o (g — c*ﬂ@s/dquN)

—p((1OP B ) o (g G N g,
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This gives the desired explicit formula. O

3 Tate parameter spaces for infinite level modular curves

We now pass to infinite level, starting with level I'g(p>°),.

Lemma 3.1. The cusps of Xli‘o(px)(e)a are a disjoint union of points which correspond

one-to-one to the cusps of X* under the map Xy (6)g — X*.

(P>)
Proof. The forgetful maps Xli‘o( o) (€)a = X*(€) induce a one-to-one correspondence on cusps
at every very level p™ by Proposition 2.10.3. The Lemma then follows from the identification
of topological spaces [Xf\) 0y (€)al = Jim X2 (o) (E)al- O

Corollary 3.2. Let (R,R%) be a perfectoid (K, Ox)-algebra. The set Xp,(p)(€)a(R, RT)
is in functorial bijection with isomorphism classes of triples (E, an, (Dn)nen) of an elliptic
curve E over R that is e-nearly ordinary, together with a I'P-structure an and a collection
of anticanonical cyclic subgroups D,, C E[p™] of rank p™ for all n that are compatible in the
sense that D, = Dy, +1[p"]. Equivalently, one could view (D, )nen as a p-divisible subgroup
of E[p™] of height 1 such that Dy is anticanonical.

Proof. Since (R, R°) is perfectoid, one has X (pe)(€)a(R, R°) = @XFO(va)(E)a(R, R°) by
[12], Proposition 2.4.5. The statement thus follows from Lemma 2.1. O

Definition 3.3. For the sake of brevity, we shall call the data of the collection of anticanon-
ical D,, an anticanonical T'x(p>)-structure or just a I'g(p>°),-structure. We will also
call the p-divisible group D = (Dy,)nen a Lo(p™)q-structure.

Recall that in the very beginning, we have chosen a flexible tame level I'?. We now want
to briefly look at what happens if we make change this level: More precisely, let TP be
any other tame level structure with conditions like in §2.1 and assume that I"? and I'? are
related via a morphism

f : XZP,F’Z’ — XZP,F”

of affine flat Z, schemes that extends to the cusps. The constructions we have made so far
also apply to the base change Xr» to Ok and we thus obtain another modular curve at
infinite level A} (€)q. The following Lemma is related to Theorem II1.3.18 of [11]:

"PTo(p°°)
Proposition 3.4. Assume we are in either of the following situations:

(a) we have I'"P C TP, and f is the forgetful morphism f: Xrw» — Xro,

(b) we have I'? =TP =T'1(N) and f is the action of some d € Z/NZ on X, (n).

(c) we have T'P =TP x T'o(M) for some M coprime to N and p, and f is the morphism

[ Xrosrgny = Xre,  (E,an,G) = (E/G,an/G).

Let 0 < € < 1/2 and consider the analytification f*™ of f. Then
1. The map f" restricts to f*" : Xp,(€) = Xfp(€).

2. The following diagram commutes:
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% _ fer % _
X (p~le) —— Xt (pte)

J J

* fer *
XF/p (6) e XFZ’ (6) .

8. In the limit, this induces a map of perfectoid spaces fs : Xli‘,pFo(pm)(e)a — Xli‘pro(poc)(e)a.
4. The map fo has a canonical formal model f, : %l’i,pro(poo)(e)a — %l’ipro(pm)(ﬁ)a.

Proof. To see the first part, we note that the Hasse invariant can be controlled: For (a) and
(b) the Hasse invariant is unchanged, and in the case of (¢), for any E with good reduction,
a lift for the Hasse invariant for E/G is given by the image of any lift of the Hasse invariant

of E under the morphism wg(p_l) — w?}lgl) induced by the dual isogeny E/G — E. This
also shows that one can construct a canonical formal model.

f:X0n(e) = Xin(e). (4)
Next, one checks that the following diagram of flat formal schemes commutes

Xp(pte) —1o X5, (p7'e)
e I
* f *
xF’P (6> ” xFP (6)

of flat formal schemes commutes. This can be checked on the generic fibre, which amounts
to checking 2: Away from the cusps this can be seen from the moduli interpretation (where
for (¢) we use that the canonical subgroup of E/G is the image of C; C E — E/G). Over
the cusps it then follows from an explicit consideration of Tate parameter spaces.

In the inverse limit over ¢, we obtain the map

foo : :{;/pro(poo)(e)a — ﬁ;PFO(pOQ)(E)a

and obtain the morphism f., from 3 as the generic fibre. O

3.1 The perfectoid Tate parameter space at level I'y(p>)

Next, we have a closer look at the cusps in the anticanonical tower and at infinite level. As
usual when working with Tate curves, we assume for simplicity that I'? = T'(N).
Lemma 2.10 shows that over any cusp of X*(¢) there is a tower of Cartesian squares

I g

L— leo(p)(e)a — X*(e).

q—q” q—q”

We first look at the limit of the tower in the upper line.

P P
Proposition 3.5. Consider the tower of analytic adic spaces - - - Linciig ) Jinsiiegy 5}

1. There is a unique perfectoid space Do, such that Do, ~ @Mp D.

2. The space Dy, can be described as the open perfectoid unit disc, that is the subspace
of the perfectoid unit disc Spa(K (q'/P”), O (q"/P™")) defined by the condition |q| < 1.
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3. The global sections of D are

|an|g™ — 0 for all 0 < g < 1,
|an| = 0 on bounded intervals

OD(D) == Z anqn € K[[QH

n€Z[1/p]>o

where the second condition means that for any § > 0 and for any bounded interval
I C Z[1/p]>o there are only finitely many n such that |a,| > 6.

4. Denote by Ok[[q"/?”]] the (w,q)-adic completion of lim Okllg"/?"]]. Then the
space Do is the adic generic fibre of the formal scheme Spf(Ok[[¢*/?” ], (w, q)).

Proof. This is easy to see using the closed perfectoid unit disc, but we instead choose to
work with an explicit affinoid perfectoid cover of D, that we need later: The space D can
be covered by D(|q|P" < |w|) = Spa(K(q/@'/?"), Ok (q/w'/P")) for n — oco. Under the
morphism D — D, ¢ — ¢P these pull back to D(\q|p"Jrl < |w), the corresponding morphism
on algebras being

Oxla/@'/"") = Oxcla/=" V"), g

Here by Ok (q/@/?") = Ok {q,q/w"/?") we denote the algebra O (q,Y)/(q — Y@'/P") of
function which converge on the closed disc of radius |w!/?"|. This algebra is isomorphic
over Ok to Ok (Y). When we take the direct limit of these spaces, and complete p-adically,
we obtain an algebra that we denote by

OK<<q/w1/p">1/p°°>< lim oK<<q/w1/p”>1/p’”>>

meN,g—qP

which is isomorphic to O (Y1/?™). From this description it is easy to check that the
algebra K (q'/?” /w'/""™) that we get from inverting p is perfectoid. It is then clear that
the perfectoid space Dy (q/w'/P") := Spa(K ((q/w'/P")1/P™) Ok ((q/w'/P")/P™)) is the
tilde-limit

Dac(a/7") ~ Jim D(lg”" < ="/, (6)

q—q?

Increasing n, it is immediate from the universal property of the perfectoid tilde-limit that
the U, glue together to give the desired perfectoid space D.

Showing 4 isn’t quite formal because tilde-limits don’t necessarily commute with tak-
ing generic fibre. But it follows directly from the same explicit constructions: Let S =
Spa(Ok[[¢"/?7]], Ok [[¢"/?"]]) and consider the subspaces S(|¢|’" < |w| # 0) which are
rational because (¢",w) is open. As usual, one shows that since Ox[[¢"/?”]] has ideal of
definition (g, w), the element |¢(x)| must be cofinal in the value group for any € S. This
shows that

St =JS(al”" < lw| #0).

Let (B,, B;") be the affinoid algebra corresponding to the rational subspace S(|g[P" < || #
0), then since ¢*" /o € B;f, the ideal (¢, @) equals (ww) and the ring B; thus has the w-
adic topology. From this one deduces that B} = O (¢*/?™ /w/™™) and thus the spaces
S(|g|P" < |w| # 0) and D(|¢|P" < |w| # 0) coincide. O

Remark 3.6. Note that D, is not affinoid, even though it is the generic fibre of an affine
formal scheme. This is not a contradiction to the equivalence K — Perf = O%° — Perf, as one
may think since the algebra Og[[¢"/?”]] looks very ”perfectoid”. But we have endowed it
with the (p, g)-adic topology, and thus it isn’t O -perfectoid. (Of course, suppressing the
g-adic topology would make it perfectoid, but would also change the adic generic fibre).
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Definition 3.7. The origin in DOO is a closed point z : Spa(K, O) — Doo. Removing this

point, we obtain a space Duo := Dog \ {2} for which Dy quqP

We are now ready to discuss cusps at infinite level and the corresponding Tate curves.

Theorem 3.8. Fiz any cusp ¢ of X*, we denote by the same later the cusps above it in the
anticanonical tower.

1. The cusp morphisms f(c), : D < P, (o )( €)a in the limit give rise to an open immer-
sion of perfectoid spaces f(¢)oo : Doo < X*O(pm)(e)a.

2. The following induced diagram is Cartesian:

(C) n *
Dog XFD (p=) ( )a

| |

D J(c)oo X*(e)

3. The morphism f(c)s Testricts to an open immersion of perfectoid spaces
F(€) : Dog = Xy (p) (€)a-
4. Let (R, R°) be a perfectoid (K, Ox)-algebra. Then the set
Doo(R, R°) € Xpype<)(€)a(R, R°)

is in functorial bijection with the set of pairs (Eq, (¢"/?" )nen) where E, is a Tate curve
over R for ¢ € R a topologically nilpotent unit, and where (ql/”")neN is a compatible
system of p"-th roots of q, determining an anticanonical T'o(p>)-structure on E,.

Proof. The existence of the morphism D, — é\,’lfo(pm)(e)a follows from Proposition 2.10,
Proposition 3.5 and the universal property of the perfectoid tilde-limit. Parts 1 to 3 of
the Theorem now follow using [12], Propositions 2.4.3 from the fact that the squares in
diagram (5) are all Cartesian. )

The moduli interpretation of Dy, also follows from diagram (5). By Corollary 2.10
the (R, R°)-points of D — Xlio(pn)(e)a correspond to Tate curves Tate(q) over R with

topologically nilpotent parameter ¢ and a choice of p"-th root ¢'/?" of ¢, in a way compatible
with the forgetful morphisms. In particular the choices of ¢'/?" are compatible via g — ¢”
in the tower. Since (R, R°) is perfectoid, we see from Proposition 3.5 that Do (R, R°) =
@quP D(R, R°). This shows that D (R, R°) corresponds to Tate curves Tate(q) with
q € R topologically nilpotent together with a compatible system of p™-th roots of gq. O

We finish this section by two Lemmas on formal models, which will later be useful when
we compare the modular curve to its tilt. Instead of constructing one formal model for D,
we work with a family of formal models of the affinoid perfectoid subspaces Do (|g|?” < |w]):

Lemma 3.9. The flat formal scheme D (q/w/?") := Spf(O ((q/w'/P")1/P™) (w)) is a

n oo

formal model of Do (|q|P" < |@|). The natural inclusion Ok [[q"/P”]] < Ok ((q/w'/P")1/P™)
induces a morphism of formal schemes

¥ Dec(a/@"/?") = Spt(Ok[ld" "7 ]], (@, 9))

whose adic generic fibre w,‘;d is the inclusion Do (|q|P" < |@|) € Do from Proposition 3.5.(2)
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Proof. Tts clear that Do, (g/w'/?") is a flat formal model for D (g/w'/?"). To construct
the map 1 we just need to observe that the natural inclusion of adic rings O [[¢'/?”]] —
Ox((q/w™/?")*/P™) is continuous. O

We remark that on the level of adic spaces, D (q/w"/ p") is just the open subspace of
Spf(Ok[[¢"/?™]], (w, q)) defined by |¢| < |w'/P"|, but we prefer to work in formal schemes
since we don’t know whether the right hand side is sheafy.

Lemma 3.10. The restriction of the morphisms of perfectoid spaces
Deo(lal < [w]'/?") € Dog = &7, (o) (€)a
has a canonical formal model D (q/w'/P") — Xy () (€)a-
Proof. This follows by taking the inverse limit of the diagram of formal schemes

D(q/w/?"") —— Spf(Ok]g]]) —— X*(p~+De)

qu"l qu”l lﬁ

D(q/w"/?") —— Spf(Ok[lgl]) —— X*(p7"¢)
over the anticanonical tower. In the limit this gives the desired morphism of formal schemes
n+1 oo "
D(q/@'P"") = Spf(Ok (g "7 1]) = Xpy ey (Oa

which on the adic generic fibre is Do — X (pee)(€)q because it is determined by the
morphisms at finite level by the universal property of the perfectoid tilde limit. O

3.2 Tate parameter spaces of Ay . (€)a

Next, we discuss the Tate parameter spaces in the pro-étale forgetful map A
is essentially a matter of pulling back results from finite level: Let

L (p=)(€)a- This

AL, (pryuro (=) (a 7= AL, (pn) (€)a X () XLy (pee) (€
As usual, we define the cusps of this space to be the preimage of the cusps at finite level.
Proposition 3.11. Assume that T? =T'(N). Let ¢y be any cusp of X*(e€).

1. The forgetful map kal(pn)mro(poo)(@a — Xli‘l(pm)(e)a gives a one-to-one correspon-
dence of the cusps of both spaces. In particular, the cusps of lel(p")ﬂl—‘o(poo)(e)a over

¢ correspond to the choice of a generator of (V) C Tate(q?"N)[p™].

2. For the associated Tate parameter space Do, — Xli‘o(poo)(e)a, there is a canonical
Cartesian diagram

(Z/P"Z)" X Doc —— &F, (yn)rry (p) (€)a

|

Do 7 Xy p) (o

3. The following diagram is Cartesian

20



(Z[p"Z)" X Doo —— AL, (ym)ry(pe) (€)a

| !

(Z/p"2)* x D s X7, (e

where the morphism on the bottom is the one from Proposition 2.11.3.

4. For varying n, the following diagram is Cartesian

(Z/p" ' Z)* X Doo —— XF, (pni1)nry (poe (€)a

I I

(Z/p"Z)* X Dos —— &L (,n)ar(p<) (€)a

where the morphism on the left is the projection.

Proof. Part 1 follows by base-change from the description of the cusps of A7 (pm)( €)q to-

gether with Lemma 3.1. Part 2 and 3 follow from Proposition 2.11.(3) and Theorem 3.8 via
the commutative cube

(Z/p"Z)* x D —> D

(Z/p"Z)* x Do %ﬁ

X5

Ty (pm)NTo (p°°)

F0 (p™

Ja > Aoy (€
in which the bottom, top, back and right square are Cartesian.

Part 4 follows from a similar commutative cube using as faces the Cartesian cubes from
Corollary 2.11.(2) and the diagram from 3. O

We now take the limit m — oo to get to the space P ety ™ Oo)( €)q: The situation in the case
of I'y (p™°) turns out to be slightly different to the situation for all the other modular curves
we had so far: While we still obtain Tate-parameter spaces D,, — AT (=) (€)q around each
cusp, these morphisms are not open immersions anymore. Vaguely speaking, this is due to
the topological phenomenon that there are ”profinitely many cusps”.

Definition 3.12. For any profinite group G, choose a system of finite groups G; with

G= @1 G, then we define G to be the unique perfectoid space which is the perfectoid tilde

limit G ~ lim G;. This is independent of the choice of G; up to unique isomorphism.
Explicitly, G is the affinoid perfectoid space

Q = Spa’(Mapcts(G7 K)7 Mapcts(Gi7 OK))

Theorem 3.1. Let ¢ be a cusp of X*(¢) and let Do — AL (c\(€)a be the corresponding
Tate parameter space.
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1. In the limit, the open immersions (Z/p™Z)* x Do — AL ( )(€)a give Tise

p™ )Mo (p>
to a Z, -equivariant open immersion f. : @ X Doy < kal(poo)(e)a that fits into a

Cartesian diagram

LY X Dog ——— Do

[ J

Xli‘l(poo)(e)a —_— Xli‘o(poo)(e)a.
2. The closed immersion Z; — Z, % Do induced by the origin Spa(K,Ok) — D

composes with f. to a Z(Elly closed morphism Z; — Xy (€)a whose image can be

1(p>)
identified with the cusps of Xl’fl(pm)(e)a over c.

8. For any a € 7%, the compatible choice of ¢* € (""" N as a basis of Tate(q?" N)[p™]

induces a map Doo — AT, (p=) (€)a which extends uniquely to a locally closed immersion
DOO — Xf‘kl(poo)<€)a.

This morphism coincides with the immersion D., — Z; X Doy — Xli‘l(px)(e)a where

the first morphism is the closed immersion induced by the point a € Z,; .

Proof. 1. By Proposition 3.11.(4) there is a tower of Cartesian diagrams

o BT X Doy —> (Bfp"T)* X Dou — ... —— Da.

l [ I

.= X;l(pmﬂ)mro(pm)(e)a — kal(pm)mro(poo)(e)a - X;O(pm)(e)a.

In the limit, this has the perfectoid tilde-limit Z) x Do, ~ @1(2/})”2)>< x Do, by
[?], Lemma 2.12. Since the vertical arrows in the diagram are all open immersions, we
conclude that in the limit we obtain the desired Cartesian diagram.

2. This follows from the fact that tilde-limits are limits on the level of topological spaces.

3. We first observe that the given data by Corollary 3.13 induces a map D— AT, (%) (€)a
which by the universal property of the tilde limit is uniquely determined by the com-
positions with the projections to finite level D — AT, (pm)mro(pw)(e)a' We know from
Proposition ?77.2 that these morphisms are open immersions and extend over the cusps.
More precisely, using Proposition ??.1 and 2. we see that at level T'y (p™) N To(p>),
this extension is given by the composition

Doo = (Z/p™Z2)* X Doo = AL, ()1 (p) (€)a

where the first map is the isomorphism onto the component corresponding to a mod p”.
In the limit we thus see that the induced morphism D, — lel(pm)(e)a is given by

DOO — @ X DOO — X].fl(pm)ﬁro(poo)(e)a

as described in 3. Since the point Spa(K,Ok) — Z, corresponding to a is a closed

immersion, the morphism Do — AT (€)q is the composition of a closed immersion
with an open immersion, and thus is locally closed. O
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3.3 Tate parameter spaces of X;(pm)(e)a

Finally, we look at the infinite level modular curve A

o) (€)q- We first note that like before,
we have the following moduli interpretation:

Corollary 3.13. Let (R, R°) be a perfectoid (K, Ok )-algebra. The set Xpe)(€)a(R, R°)
is in functorial bijection with isomorphism classes of triples (E,an,D,3) of an e-nearly
ordinary elliptic curve E over R, together with a T'P-structure ap, and an isomorphism of
p-divisible groups 8 : (Q,/Zy,)* — E[p™] over R (or equivalently an isomorphism L2 — T,E)
such that the restriction of 8 to the first factor is an anti-canonical T'1(p®)-structure.

Proof. This is an immediate consequence of Corollary 3.14 and [12], Proposition 2.4.5. [

Next, we look at the Tate parameter spaces in the pro-étale map le(poo) (6)a — Ry %) (€)a-
As before, we do so by looking at the limit of the finite level morphisms

Xrpmyro =) = L) (D Xz n (@0 A=) (Oa = Xry o) (€)a-

Corollary 3.14. Let (R, R") be a perfectoid (K,Ok)-algebra. Then the set of (R, RT)-
points Xp(pnynr (pee) (€)a(R, RY) is in functorial bijection with the set of isomorphism classes
of e-nearly ordinary elliptic curves E over R together with a choice of T'P-structure, a
Lo(p>)a-structure D C E[p™®] as well as an isomorphism o : (Z/p"N)? — E[p"] such
that a(1,0) generates D,,.

Proof. This is immediate from the moduli interpretation of X~y and Corollary 3.2. O

We have the following description of the cusps of le(pm)ﬁl—‘o(p‘x’) (€)q, which we may define
to be the complement of the open subspace Xppm)ar,pee)(€)a-

Proposition 3.15. Assume that T? =T'(N). Let ¢ be any cusp of X*(e).

1. The morphism X;(p"”)ﬂf‘o(poo)(e)a — le(p,,,b)(e)a gives a bijection of cusps. In partic-
ular, the cusps of Xf':(pm)ﬁFg(pOQ)(e)a over ¢ are pgmmetm’sed j)y Lo(p™, Z/p"Z) where
v = (8 2) corresponds to the ordered basis (q*N/P ,anq_bN/p ) of Tate(q™)[p™].

2. For the associated Tate parameter space Do, — Xli‘o(pm)(e)a, there is a canonical
Cartesian diagram

Fo(pn7Z/an) X DOO (&) XF(pn)mr‘U(poo)(e)a

! |

Do

XFO(P“)(E)G
3. The following diagram is Cartesian:

Lo(p™, Z/p"Z) X Doo = X (ymyary (o) (€)a

| !

Lo(p", Z/p"Z) x D ——— X,my(€)a

where the morphism on the bottom is the morphism ¢ over ¢ from Proposition 2.14.

4. The following diagram is Cartesian, where the map on the left is given by (‘Z 2) —d
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Lo(p", Z/p"Z) X Doo — X (ymyry(pe) (€)a

| !

M X Do XF (p™ )ﬂFo(p"o)( €a-

Proof. Parts 1 to 3 follow from Proposition 2.14, Theorem 3.8 and the commutative cube

Z/p"Z )x D 4> D

(p Z/p”Z X Do

F(P F0 (™)

X a4>2(;

I'(pm )ﬂl“o(p“’) (p°°)

Part 5. follows from a similar commutative cube using the left square in Proposition 2.15
and Proposition 3.11. O

Lemma 3.16. The morphisms from Proposition 3.15.2 for varying n give rise to the fol-
lowing tower of Cartesian diagrams

.= To(p"t,Z/p" 1 Z) x Do — To(p™, Z/p"Z) X Doo — ... — Dy

l l I

—_ XF(pm)mro(poo)(e)a — .= AR To(p oo)( €)a

- T AR mi)ar, (pe) (€)a

where the map on top is induced by the reduction To(p"tt, Z/p" 1 7Z) — To(p™, Z/p"7Z).
Proof. This follows from Proposition 3.15.2 and Corollary 77 O

Definition 3.17. Let I'g(p>°) = T'g(p™, Z,) be the subgroup of GL2(Z,) of matrices of the
form (§ %). This is a profinite group because via GLy(Zp) = Jim GL, (Z/p"7Z) we have

Lo(p™) = lim Lo (p", Z/p"Z)

We are now ready to prove the main result of this section, namely a description of the
cusps of le(poo)(e)a. For the statement, let us briefly recall that the universal Tate curve

over Dy, is given by Tate(q"), in contrast to the situation at finite level I'(p™) where the
universal Tate curve is Tate(q?" V). For any n we have a canonical basis for Tate(q?" ™ )[p"]
given by (¢'/?", pn). In particular, we have a canonical basis of the Tate module T}, Tate(q")
given by the compatible system (g™ / p")neN that we denote by ¢"¥/?” and the compatible
system ((pn )nen that we denote by (peo

Theorem 3.18. Let ¢ be a cusp of X*(e).

1. In the limit, the open immersions T'o(p", Z/p"Z) X Do = XJ(,u)ar, (poe) (€)a give rise
to an open immersion
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2. The image of the closed immersion To(p™ Z/an) — To(p™,Z/p"7Z) x Do, defined by
q — 0 is precisely the subset of cusps of X, F(p )(e)a lying over ¢ via le(poo)(e)a — X,

3. For any v = (8 Z) € Ty(p™), the cusp of Xli‘(poo)(e)a obtained by specialising at vy
18 the one corresponding to the isomorphism Zf, — T,Tate(q"™) defined by the basis
(qN/P™ s Cpoo q NPTy of T, Tate(gV).

4. The following commutative diagram is a tower of Cartesian squares

Lo(p™) X Doo —— LS X Do Deo D

I I | |
Al oy (Da = XT ooy (€)a — A ooy () — X*(e).

where the morphism on the top left is (‘; b) — d.

Proof. 1. This is a consequence of Lemma 3.16, and Lemma 2.12 in [?].

2. This follows from Proposition 3.15.1 and Lemma 3.16, together with the fact that

| AT (poe) (€)al = Hm | AT (o) (p=) (€)a| Dy definition of the tilde-limit.

3. Follows from Proposition 3.15.3 and Lemma 3.16.

4. Tt suffices to show that the left square commutes, since we have already shown that the
other squares are Cartesian in Theorem 77 and Theorem 3.8. But this is a consequence
of 2.15 in the limit over n: By Lemmas ?? and 7?7 and Proposition 2.14, the following
is a commutative cube with all vertical squares Cartesian:

To(p™,Z/p"Z) x D ——— Z/p"Z x D

/’ /’
To(p"+!, Z/p" 1 Z) x D Z)p"\Z x D

X*(p")( a le1 (p™) (€)a
7 7

Xf:(pnﬂ)(e)a ” Xr(pn+1)(€)

where the diagonal morphisms on top are given by reduction on the first component,
and ¢ — ¢P on the second component. In the limit over n, this shows that the left
square in 4. is commutative. That it is Cartesian follows from the fact that pullbacks
commute with perfectoid tilde-limits. O

We note the following easy consequence (the analogue of this for Siegel moduli spaces
for genus g > 1 is proved in the proof of [11], Lemma III.2.35).

Corollary 3.19. For anyn € NU{oo}, our choice of (;° induces a canonical isomorphism

l:k(p")(o)a = I_I 1;"1 (p”)(o)a
T'(p™)/T1(p™)

Proof. For n = oo, there is away from the cusps a canonical splitting induced by T,F =
T,,C x T, D and the canonical isomorphism 7},C' = T),DV induced from the Weil pairing. On
Tate parameter spaces, one checks that this splitting is given by Z; x D — FO( ) x D007

(a,q) — ((“ 0 ) ,q), which clearly extends over the boundary. Slmllarly for n < oco. O

0a"?
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3.4 The action of I'y(p) on the cusps of A} (€)a

Finally in this section, we discuss the action of the full action on the Tate parameter spaces
at infinite level. We first recall which group acts at infinite level:

Definition 3.20. Let I'g(p) = I'y(p, Z,) be the subgroup of GLQ( ») of matrices of the form
(%%) with ¢c=0 mod p. This is a profinite group with T'o(p L To(p,Z/p"Z).

Since the GL2(Z/p"Z)-action on each A} ., restricts to a I'o(p, Z/p"Z)-action on the
subspace A7 (,.)(€)q as is evident from the moduli description, we see that the GLa(Zp)-
action on Xy ., restricts to a I'o(p)-action on X7 ,ec)(€)a-

Theorem 3.21. Over any cusp ¢ of X*, the I'o(p)-action on Xp . (€)a restricts to an

action on P @ Lo(p™) X Doo = Xr(poo)( €)a where it can be described as follows: Equip

To(p) x D with a right action by pZ, via (v,¢*/?") — (v(}9), ]%qu/pm) for h € pZy,

then

(Co(p) X Doo)/pZy = To(p™) X Doo

as sheaves and the left action of T'o(p) is the one induced by letting To(p) act on the first
factor of To(p) X Doo. Explicitly, in terms of any y1 € I'o(p), the action is given by

Y1 Fo( )XD ——)PQ( )XDOO

™ (det('yg)/dg b3) C*d%ql/pm
b) pm .

Y2,4 0 ds

— (as b3

where 3 i ds) =1 Ve,

Proof. That the action restricts to an action on I'g(p™) x Dy is a consequence Proposi-
tion 2.17 in the limit over n. The same argument gives the explicit formula.

Let us explain what we mean by the equality (I'g(p) X Doo)/pZy = Io(p™) X Ds. One
way to see this is as an isomorphism of diamonds, but for simplicity we may just work with
the category of sheaves on the category Perf . In particular, the quotient (I'o(p) X Do) /DZy
is to be taken in the category of sheaves on Perfy. S

The isomorphism can then be constructed as a limit of the isomorphisms at finite level:
One checks that the following diagram commutes:

Fo(p,Z/pn'HZ) < D > Fo(pn—&-l,z/pn—i-lz) Ng)) (z Z) .q — (det('ydv,)/dg Zz) ’Cp—n(fl/dqu

| | I

Lo(p,Z/p"Z) x D — To(p", Z/p"Z) x D (24),q" » (d““g)/”h ”3) Gt N g

(to avoid confusion we emphasize that on the right we are describing the maps in terms
of points, and therefore the lower horizontal is indeed given by multiplication by CZ;LC 2/ d3N,

whereas on the level of functions it sends ¢P — C e/ dSqu). When we endow the spaces

on the left with the pZ, actions via the reductlons pZy, — pZ/p"TZ and pZ, — pZ/p"Z
respectively, we moreover see that the vertical morphism on the left is equivariant under the
action of pZ,. The diagram is moreover equivariant for the I'g(p)-action on the left via the
reductions T'o(p) — To(p, Z/p"17Z) and To(p) — To(p, Z/p"Z) respectively. In the limit we
therefore obtain a pZ,-invariant morphism

Fo(p) X Doo — Fo(poo) X Doo
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which is equivariant for the I'g(p)-action on the left of both sides.

We are left to see that this is a quotient map of sheaves for the action of pZ,, which is
easy to check on points: On the level of sets, we have I'(p)/pZ, = T'o(p*°) with a natural
set-theoretic section given by the inclusion map, giving a bijection I'g(p) = T'o(p™) X pZ,.
For any perfectoid K-algebra (R, RT) for which | Spa(R, RT)| is connected we then have

(Co(p™) x Doo)(R, RY) =L'o(p™) x Do(R, R") = (To(p) X Do (R, R")) /L,
=(Co(p) x Doo)(R, RT)/pZy.

where the second equality is via I'g(p) = T'o(p™) x pZ,. This shows that I'o(p™) X Du
indeed has the universal property of the quotient in the category of sheaves on Perfy. O

Perhaps should also say something about classification of points at infinite level.

3.5 The Hodge-Tate period map on Tate parameter spaces

In this section we want to see what the Hodge-Tate map looks like on Tate parameter spaces.

Recall that over the ordinary locus, the Hodge-Tate map T,,E — wg has kernel T,,C' the
Tate module of the canonical p-divisible subgroup, and thus the Hodge filtration is given by
1,C — T, E. In particular, this means that

TaT (X (ye) (0)) C PH(Zp).

When we further restrict to the anticanonical locus, the image lies in the points of the
form (a : 1) € PY(Z,) with a € Z,. In particular, when we denote by B;(0) C P'(Z,) the
ball of radius 1 inside the canonical chart A! C P! around (0 : 1), the Hodge-Tate period
map restricts to

T (X ey (0)a) € Bi(0) € PA(Z,).

On Bj(0) there is a canonical parameter z given by the coordinate (z : 1). We denote its
pullback to Xli‘(pm)(e)a by 3.

Proposition 3.22.

1. Let Z; — By (0) be the natural morphism given by a — a. Consider the morphism

¢ :To(p™) X Do = Zp, (v=(8Y),z) —b/d.

Then for any v = (8 Z) € Do(p>) and any cusp, the following diagram is commutative:

= (7,9)

Do Lo(p™) X Dog —— A (€)a » Arpe)

J >

Spa(K, OK) b/d @ Bl(O) a—(a:l) Pl

2. The natural parameter 3 restricts on Ko(p™°) X Dy to the function
oy = ((545) = b/d) € Map,, (Ko(5™), 0(Dwc)).

We deduce this from the following Lemma:
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Lemma 3.23. Let F : Dy, — AL be function such that F = a is constant on (C, O¢)-points.
Then the corresponding function in O(Ds) is given by the constant a € K C O(Deo).

Proof. Tt suffices to prove this for any of the spaces Do (|q| < @w™). After rescaling, we
are reduced to showing the Lemma for D, replaced by Spa(K(¢'/?™), O (¢"/?™)). One
can now argue like in the classical proof of the maximum principle: Let f € K(qg'/?”),
f= ZmeZ[l/p]zo amq™ be the function corresponding to F. We need to prove that if

F((z*7");en) is constant for all (z'/P");ey € fm  Oc then f is constant. After subtract-
ing by ag, we may assume that f(z) =0 for all x € O¢.

Suppose that f # 0. The convergence condition on coefficients assures that the supre-
UM SUP,,ez(1/p] [@m| > 0 is attained and after dividing through by a, for which |a,,| is
maximal, we may assume that |f| = max,,ez[1/p] |am| = 1. In this case, consider the map

r: O (g/P7) = k[¢VP" |n e N]

that we get from reducing by the maximal ideal m C Og. After replacing ¢ — qp’c we may
assume that r(f) € k[g]. Since O¢ is perfectoid, the projection map @OC — O¢ = kis
surjective, and the assumption on f now implies that r(f) is a non-zero polynomial in k[q]
which is = 0 for all g € k, a contradiction. O

proof of Proposition 3.22. By the Lemma it suffices to prove that for any v € Ky(p®) the
morphism Dse 2209 Ko(p™) x Doy — XL (poe) (€)a THT, P! is constant on topological
spaces with image b/d. To see this, we may use the moduli interpretation of wgyr on
(C, O¢)-points:

On the ordinary locus, it sends any ZIQJ — T,E to point of P}(Z,) defined by the line

T,C C T, E where C is the canonical p-divisible subgroup. By Theorem 3.18.3, any (C, O¢)-
point of Doe X224 K (p™°) x Do corresponds to a Tate curve E, with basis of T, E, given

by (e1,e2) = (¢™NV/P™ (% q "N/P™). One checks that (using additive notation on 7}, E)
be; + dey = qbdN/pooC;i q_de/pOC = Cgi
which spans the line ((p) = T,,C C T,E. Consequently, the image of (v, q) under mgr is
mar(v,q) = (b:d) = (b/d: 1) € Z C PY(Zy).

Using the Lemma, this shows that my7 (7, —) : De — P! is defined by the constant b/d €
K C O(Do).

We conclude from this that the function f € Map (Ko (p™), O(Ds)) defined by mpr :
Ky(p™) x Do — B(0) evaluates at v to f(v) = b/d. Since this is true for all v € Ky(p),

we see that f is given by a function in Map.(Ko(p™),Z, ) € Map.(Ko(p™), O(D))-
Consequently, 77 factors through

Ko(p™) x Dos = Ly, (v,0) = b/d
as desired. The second part is then an immediate consequence by taking global sections. [J

3.6 Tate parameter spaces of the modular curve at infinite level

As an immediate Corollary of the above, we can now consider the case of X; *(poo). Recall
that by the very construction in [11], this is the space GL2(Qp) A (o) (€) defined by glueing
translates of le(poo)(e)a. We can thus deduce from our results so far:
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Theorem 3.2. 1. Consider the right action of Z, on the perfectoid space GLa(Zp) X D

defined by (v,q) - h = (v(19),(eq"/?™). Then the quotient (GLy(Zy,) X Do) /Zy
exists as an adic space. Let ¢ be any cusp of X*. Then the pullback of the corresponding
Tate parameter space D — X* along the projection /'\,’Ii‘(pm) — X* is of the form

(GL2(Z,) x Do) /2, —— D

I |

Aoy —————> A7

where the morphism on top is projection to the second factor. The morphism on the
left is canonical after a choice of (yeo and is then GLo(Z,)-equivariant for the natural

left action on (GL2(Z,) X Do)/ Zy, induced by letting GLo(Z,,) act on the first factor.

2. The map TuT @ X ooy = P! restricts to (GLa(Zp) X Doo)/Zy — P! PY(Zy) given by

((‘;Z),q)l%(b:d).

In other words, the following diagram commutes:

(p

(GL2(Z1)) X DOO)/ZP B Pl(Zp)

l |

ey ——— P,
Proof. To see that (GL2(Z,) x ) /Z, exists as an adic space, we simply note that we can
construct it as GLy(Z,) - (Ko(p™) X Doo)/Zy, that is by glueing copies of (Ko(p™) x Do) /Z,p
using the action of GLQ(ZP). Since we may without loss of generality replace Xr(poo) by

Ay (0), and the latter is simply GL2(Zp) - X7 (0)a, the first part then follows from

translating the Cartesian diagram from Theorem 3.2 by the GL2(Z,)-action. The second
part follows from Proposition 3.22 by GL2(Z,)-equivariance of mg. O

4 Modular curves in characteristic p

We now switch to analytic moduli spaces in characteristic p. More precisely, we work over
(K", O»). Let X’ be the tame level I'” modular curve over O, with generic fibre X, over
K. We denote by X’* and X =, the minimal compactifications. We denote by X, , € X'
the affine open subscheme where the Hasse invariant Ha is invertible. Similarly, one defines
X", € X" which is also affine open.

Let X be the w’-adic completion of X’ and let X’ be the analytification of X" o> similarly
for the compactifications. Like in the characteristic 0 case, for 0 < ¢ < 1/2 we denote by
X'*(e) the open subspace of X'* where |Ha| > |w|®. Like before, there is a canonical formal
model X™*(e) — X™. For any adic space Y — X" we write V(e) := Y Xy X™*(e). In
particular, there is the open subspace X’(¢) C X"*(e). We recall that while the elliptic
curves parametrised by this space might have good supersingular reduction, the condition
on the Hasse invariant ensures that generically, these elliptic curves are ordinary. In other
words, X'(¢) C X!

ord*
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4.1 Igusa curves
Let us recall that in characteristic p one has the Igusa moduli problem:

Definition 4.1 ([9], Definition 12.3.1). Let S be a scheme of characteristic p and let E be
an elliptic curve over S. Consider the Verschiebung morphism ker V" : E®") — E. An
Igusa structure on E is a morphism ¢ : Z/p"Z — E®")(S) that is a Drinfeld generator of
ker V", that is such that the Cartier divisor -, 4, [¢(a)] € E®") coincides with ker V™.

The Igusa problem [Ig(p™)] is the moduli problem defined by the functor sending F|S
to the set of Igusa structures on E. In case that E|S is ordinary, the group scheme ker V"
is étale and an Igusa structure on S then always exists after an étale extension of S. In
particular, in this situation a Ig(p™)-structure is the same as an isomorphism Z/p"Z — C),
which by Cartier-duality is the same as an isomorphism C,, — fipn.

For any n > 0, the Igusa problem [Ig(p™)] is relatively representable, finite and flat
of degree ¢(p™) on Ell|F, by [9], Theorem 12.6.1. In particular, the simultaneous moduli
problem [Ig(p™), I'?] is representable by a moduli scheme Xp, 14(,n) over Fy,. The forgetful

map f : Xﬁ‘p)lg(p“) — Xy is finite and flat, and is an étale (Z/p"Z)*-torsor over the

ordinary locus X]f,‘;rd C X{Fp with group (Z/p"Z)*. There is moreover a finite flat forgetful
map X]'leg(pnﬂ) — XI/FP,Ig(p")' One defines by normalisation a compactification X;mlg(p”).
The morphism f : X]P’.p Ta(pr) — Xu/?p then extends to a map

e Xﬁylg(p") - Xﬁ

which is still finite Galois with group (Z/p"Z)* over the ordinary locus.

For any morphism Spec(F,((¢))) — X, corresponding to a choice of I'(IV)-structure
on Tate(q"), any choice of isomorphism pyn — pyn C Tate(q™)[p"] induces a morphism
Spec(F,((q))) — XI’FQ Ig(pn) Making the following diagram commute:

SpeC(Fq((q))) — XI/Fq,Ig(p")

|

Spec(Fq((9))) —— X,

In particular, over any cusp of Xﬁ-’; there are precisely ¢(p™) disjoint cusps of XI’F’; Te(p)"
!/

We denote by Xlg(pn)

completion formal schemes %ig(pn) and X

the base change of Xﬂép Ta(pr) tO Ok. Like for X’ one defines by
as well as analytifications ng(pn) and Xllg(pn)v
as well as open subspaces A7 .\ (€). Since X"*(e) C A%, the morphism A75 . (e) = X" (e)
is a finite étale Z/p"Z-torsor. Like in the case of characteristic 0, these spaces represent the
obvious adic moduli functors by Lemma ?7?, using that X’ is affine.

£
TIg(p™)

Definition 4.2. We call Igusa tower the inverse system of forgetful morphisms
PN XI’g(an)(e) — ng(pn)(e) — = X ().

Note that all the transition maps in this inverse system are finite étale.

4.2 Tate parameter spaces for Igusa curves

I*x
Tg(p™
let Spf(Ope [Cn]lal]) — Xiz(,n) be the completion along c. Upon w-adic completion this

gives a morphism

Next, we wish to analyse the analytic situation at the cusp. Let ¢ be a cusp of X ) and

Spf(OK" [CN][[QHa (qv w)) - xf;(ﬁ")'
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Denote by f(c), : D' — &{ o(pn) the generic fibre. Here D' is the open subspace of the closed

disc Spa(K”(q), O»(q)) over K’ defined by |g| < 1. Then Conrad’s Berthelot generic fibre
construction gives the analogue of Theorem 2.3 for Igusa curves:

Proposition 4.3. The morphism f(c), : D' — ng(pn) of rigid spaces is an open immersion

that identifies D' with an open neighbourhood of the cusp c.

Lemma 4.4. Denote by w the map of locally ringed spaces w : D' — Spec(Fy[[q]] @ Og)
induced by the natural inclusion Fy[[q]] @ Og» < Op:(D'). Then the following diagram of
locally ringed spaces commutes:

Spec(Fy[[q]] ® Og») —— ng(pn)

Cn /% .
D XIg‘(p")
Proof. Exactly like for Lemma 2.5. O
Proposition 4.5. Let ¢y be a cusp of X'*.

1. There is a canonical Cartesian diagram

Z/p"Zx D ——————— D

I |

XL oy (€) ——— X7%(c)

where the map on the right is the union of the maps f(c), for all cusps ¢ over cq.

2. There is a canonical Cartesian diagram, where the morphism on top is the projection

Z/p"t L x D ——— 5 T/p"Z x D'

l l

Xigpmin (€) r g pm (©)-

Proof. This can be proved like in 2.11, using Lemma 7?7 and Lemma 4.4. O

Corollary 4.6. Let ¢ be the cusp over ¢y corresponding to a € Z/p™Z. For any honest
adic space S over K°, a morphism S — Xl'g(pn) factors through f(c) : D' — ng(pn) if and
only if it corresponds to a Tate curve over O(S) with topologically nilpotent parameter q
and with Ig(p")-structure given by piyn — ppn C Tate(q™). Equivalently, by duality, the

Ig(p")-structure is given by the choice of basis ¢* of (q) C Tate(qg? V).
Proof. This can be deduced from the Lemma and the Proposition like in Corollary 2.6. [

Lemma 4.7. For any n € N, the following diagrams are Cartesian:

.D/ — X{g(p")(pilﬁ) Xllg(p'rHrl)(p_le) — X{g(pn)(p_le)
(1) lqﬁqp lFl (2) lF lF
D" —— Xigipm)(©). Hgpri1)(€) = Xigm (©)-
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Proof. The diagrams commute by functoriality of Frobenius. We are thus left to see they
are Cartesian

1. Tt suffices to check this on (C, O¢)-points because the horizontal morphisms are open
immersions: It is clear that the cusps correspond, since these do not depend on e and
q — ¢P sends the origin to the origin. Away from the cusps, we can check that the
diagram is Cartesian using the moduli description from Corollary 4.6.

2. We can see this by comparing Xl’g*(pnﬂ)(p*le) to the fibre product in the category of
finite étale adic spaces over Xl’g(pn)(p’le), and using [7] Example 1.6.6.(ii). Alterna-
tively, we can check this on moduli interpretations, using that the relative Frobenius

maps ker V"|E(p") isomorphically onto ker V"|E(1’n+1) in the case that F is ordinary.
Then look at Tate parameter spaces to extend over the cusp.

O

4.3 Perfections of Igusa curves

In this section we discuss the perfectoid Igusa curves and their Tate parameter spaces. We
first recall the perfection functor in characteristic p:

Definition 4.8 ([11], Definition IT1.2.18). Let ) be an adic space over (K, O%.). Then there
is a perfectoid space yrerf gyer (K b, (93() such that yrerf ~ @1 ” Y where F' denotes the

relative Frobenius morphism of Y, and where we identify Y®) with ) using that (K b, (’)3{)
is perfect. We call yrerf the perfection of ). The formation ) +> yrerf ig functorial.

In the case of Y = X", we can first take the formal scheme limit xP = lim X" (p~"e)
in the category of formal schemes. Its generic fibre is then the tilde limit

X/*perf _ x/*gerf N ]'&n(%/*(pfne))n
F

by Proposition 2.4.2 of [12] and it’s easy to check on any affine formal subscheme of X’* that
this space is perfectoid. Similarly, we construct the perfection of Xl’g(pn)(e)perf.

Proposition 4.9. For any cusp ¢ of X{g(pn),

(e) fits into a Cartesian diagram

the perfection of the corresponding Tate pa-
rameter space D — ng(pn)

A

| !

D — ng(pn)(f)-
Here the space D' := D't can be canonically identified with the open subspace of the

perfectoid unit disc Spa(K*(q"/P”), Oy (" /P7)) defined by |q| < 1.

Proof. This follows from [12], Proposition 2.4.3, in the limit over the Cartesian diagrams
from Lemma 4.7. O

As before we can cover D', by affinoid perfectoid subspaces D', (|q| < |w'/ p* ), and also
as before these have canonical models:
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Lemma 4.10. The flat formal scheme ®'_(q/w'/?") := Spf(O g ((q/*/P")/P™) (@) is a
formal model of D',_(|q|P" < |@|). The natural inclusion Oy [[q*/P" )] <= O ((q/'/P")H/P™)
induces a morphism of formal schemes

¥ Doolg/w?") = Spt(Ok[[a"/*7 ], (=, q))

whose adic generic fibre z/;%d is the inclusion Doo(|q|P" < |@|) € Dao. In particular, we have

for any cusp of X[* . (€) a canonical formal model Do (q/w'/P") — Xi% . (e)P* of the

g(p™) Ig(p™)
restricted Tate parameter space Do (q/w'/P") — X{g(pn)(e)f’erfat that cusp.

Proof. Like in Lemma 3.9. O

Lemma 4.11. The following diagram is Cartesian

M) (P ——> Xy (P

l l

Xl/g(p"‘“) (€) Xllg*(p”) (€)-

Proof. The fibre product exists and is perfectoid because the morphism in the bottom hor-
izontal is finite étale. The statement then follows because perfectoid tilde-limits commute
with fibre products, and using Lemma 4.7. O

Definition 4.12. As a consequence of the Lemma, we obtain a tower
R X{g(anrl)(e)perf — I’g(pn)(e)perf — = X (e)Pert

of affinoid perfectoid spaces with finite étale transition maps. In particular, the limit of this
system exists. We denote it by Xl’g(poo)(e)perf even though so far we have not defined what
Xig(p)(€) is, but we will later see that this notation is justified.

Proposition 4.13. Let ¢ be any cusp of X'*(¢). Then the following diagrams are Cartesian

Z/p"Z x D, —— D'_ Zy x D, ———— D,
(i) l fo (i) l Jf(c)
Xy (€)PTT —— X (e)PerT. A ooy (€)PT ——> X% (e)Perl.

Proof. 1. Follows from Lemma 4.9, Proposition 4.9 and Proposition 4.5 using the Carte-
sian cube that these three span.

2. Follows in the inverse limit from (i) and Proposition 4.5.2.

5 Tilting isomorphisms for modular curves

While so far we have studied modular curves in characteristic 0 and p separately, we now
compare the two worlds via tilting. The basis that makes this possible is the following result:

Theorem 5.1 ([11], Corollary I11.2.19). There is a canonical isomorphism

e (€l = X7 (0P
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Let us recall how this is proved: The identification
OK /p = OK” /w

gives an identification of the reductions X*/p = X¥"*/w which by an explicit inspection on
affine opens extends to a natural isomorphism

X (e)/p=X"(e)/w. (7)

Since ¢ : X*(p~te) — X*(e) moreover reduces to Frobenius mod p'~¢, we see that when we

further reduce equation 7 to Ok /p! =€ = Ok /!¢, then we can also identify the reduction

of ¢ with the relative Frobenius morphism. In the inverse limit, this gives the result by [10],

Theorem 5.2.

Lemma 5.2. 1. The isomorphism from Theorem 5.1 identifies the cusps of Xli‘o(poo)(e)a
and X*(e)Pert,

2. For any cusp ¢ of X*(€), the tilt of the Tate parameter space Do, — Xl’fo(pw)(e)a can

be identified with the Tate parameter space around the corresponding cusp of ./'\,’*(e)perf

Dgo — X;o(pw)(e)z

D/oo . X (6)perf

where the identification on the left is induced by the natural isomorphism of closed unit
discs K (q'/P™ ) = K*(¢"/P™).

Definition 5.3. Let £ — X and & — X’ be the analytifications of the respective universal
elliptic curves. Since £ is smooth over K, the fibre product ngo(poo)(e)a = Xpy(poe)(€)a Xx &

exists as a sous-perfectoid adic space. We similarly define 5;(,(6)perf — X' (e)pe’f.

We denote by Dy (Exp e (e)a) — XTo(p=)(€)a the universal anticanonical subgroup
of rank n, this is a finite étale morphism of perfectoid space. We moreover denote by
D;(E;{,(E)perf) — )(’(e)perf the finite étale perfectoid space given by ker V™ of S;{,(

E)perf .

Lemma 5.4. The tilt of Dn(Exy,ei(e)a) = Xro(pe)(€)a is naturally isomorphic to the
perfectoid space D;(E/'Y,(e)perf) — X'(e)Pt over Xro(poo)(€)z = X'(e)Pert,

This Lemma is a slight extension of [11], Lemma II1.2.26 from the good reduction locus
to the whole uncompactified modular curve (recall that [11] writes X for the good reduction
locus, whereas we use it to denote the whole modular curve).

Proof. Tt suffices to see this locally on Ap (,=)(€)a. The case of good reduction is [11]
Lemma II1.2.26. It therefore suffices to prove the Theorem over the ordinary locus Ap () (0).

Let (R, R") be any perfectoid (K, Ok )-algebra and let a : Spa(R, Rt) — X1 (p)(0) be
ay morphism, corresponding to an elliptic curve E|R together with the data of subgroups
D,, for all R. Since we are over the ordinary locus, we also have canonical subgroups C,,(E)
of arbitrary rank and a canonical isomorphism

Dy, = Co(E/D,)Y = Co(E)Y

constructed as follows: The first isomorphism is induced from the Weil pairing and the short

exact sequence
0— C,(E/D,) — E/D,[p"] = D, — 0.
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The isomorphism C,,(E/D,)" = C,(E)Y as follows: Since C,,(E) N D,, = 0, the isogeny
E — E/D,, sends C, (E) isomorphically onto C,,(E/D,,). Dualizing this isomorphism gives
the desired identification C,,(E/D,)Y = C,(E)".

Let o : Spa(R’, R"t) — A1y (p>=)(0) be the tilt of a, corresponding to an elliptic curve
E'|R’ and let D!, (E’) := ker V"(E'). For any m € Z we denote by E'®") the base change
along the n-th iterate of absolute Frobenius F™ on R (note that in particular this makes
sense for m < 0 since R is perfect). Let us write C/, for ker F on an elliptic curve in
characteristic p. Since E’ is ordinary, we then have analogous identifications

D, =C(E"" )Y = O (E")
where the first isomorphism comes from the short exact sequence
0= CL(E'® )y = BT L ker VR(E') — 0

and the second comes from identifying kernels of Frobenius under the Verschiebung isogeny
VriE — BT,

We thus see that it suffices to prove that there is a canonical isomorphism of perfectoid
spaces C,,(E)’ = C/(E')V, functorial in R. To see this, we note that for C,(F) there is
a natural model over R* ( [1], Proposition 3.2): Indeed, let E},, ; — X5, be the semi-
abelian scheme extending the universal elliptic curve E, =~ — Xo,, and let €7, — X* be
its p-adic completion. Then €7, . has canonical subgroups €,, of arbitrary rank over Xo,
which reduce to kernel of Frobenius mod p. Due to the affineness of A} (poo)(O), the map
« has a natural formal model a : Spf(R") — X7y (p)(0) = X* and by pulling back &, we
thus obtain a canonical model €, (E) of C,(F) over R with étale dual.

A similar argument using the semi-abelian scheme €7 . — X gives a canonical formal

sem?i

model & (E') of C,,(E’) over Spf(R**) with étale dual. The natural isomorphism

semt sem?i

then induces an isomorphism €,(E)/p = € (E’)/w which is functorial in R and « since
both spaces were defined by pullback from the universal situation. Via Cartier duality we
now obtain a natural isomorphism

C.(E) /p=C(E)Y |m.
The tilting equivalence ([10], Theorem 5.2) now implies that C,,(E)¥* = C’ (E")". O

The following Lemma gives a more explicit description of this isomorphism over the Tate
parameter spaces:
Lemma 5.5. Let c be any cusp of X (p=)(€)a- Then over the corresponding Tate parameter
space Do — Xpy(peo)(€)a, the restriction of Dn(é’Xro(pm)(e)G) s canonically isomorphic to
Z/p"Z via the generator q"'?" of (¢"/*") C T(q)[p"]. Similarly we have D), (Ex:(cpert) =
Z/p"Z on D! — X'(e)P™. The isomorphism D°, = D!, over D' form Lemma 5.4 is then

the one that commutes with the canonical isomorphism Z/p“Zb =7Z/p"Z.

Proof. In the proof of the Lemma, the isomorphism DZ = D] was constructed using
the canonical identification of the canonical subgroups on the special fibre. Since D —
X, (po=)(€)q arises as the restriction of the generic fibre of

Spf (O [[g]]) — :{;o(px)(o)a’
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to the open subspace away from the cusp, this reduces to a statement about the pullback of
the semiabelian scheme to Spf(Of [[g]]). But since this is the semiabelian scheme associated
to the Tate curve, it’s canonical subgroup is canonically isomorphic to p,» over Ok|[[g]] (cite
somewhere in [3]), and similarly over Ok[[g]]. On Cartier duals, the canonical isomorphism
ppn — Cr(T(q)) gives the desired trivialisation D,,(T(q)) — Z/p™Z on Do Similarly for
D!,(T(q)) — Z/p"Z on DL,

The Lemma follows since the isomorphisms p,n — C,(T(q)) over Ox[[¢]] and ppn —

C7 (T(q)) over Ok [[q]] are identified upon reduction to Ok /p[[g]] = Ok /w][q]]- O
Theorem 5.6. 1. For any n € N, there is a canonical isomorphism
* b ~ * erf
A prnrae) (o > Xgpmy (€)°
ey (€, ————— X (P

which is (Z/p"7Z)* -equivariant and makes the diagram commute.

2. In the limit, we obtain a canonical isomorphism

XL, (o) (D = Aoy (97
X (e)b . X/*(e)perf
Lo(p>)\-/a

which is Z,; -equivariant and makes the diagram commute.
3. Over any cusp of Xli‘o(poo)(e)a, the tilt of the cusp morphism @ X Doy < lel(pw)(e)a
fits into the commutative diagram

b * b
Ly x Dy ——— & o) (6,
| |

@ % D/perf < Xllg(px)(e)perf.

Proof. For any n € N, the functorial isomorphism from Lemma 5.4 induces by the moduli
interpretations an isomorphism away from the cusps:

XFl(P7'L)ﬁFQ(p°°) (E)Z - XI’g(p"”) (E)perf
Xy (o) (€)f, === X'(e)?""

In order to prove part 1 of the Theorem, we need to show that this extends over the cusps.

To this end, fix a cusp c of A}, ) (€)q- Recall from Lemma 5.2 that on the Tate parameter
spaces at ¢, the isomorphism Xl’fo(pm)(e)z — X" ()Pt restricts to the canonical isomor-
phism D’ = D’_. Using the description of the Tate parameters in T (pmyro(pe) (€)a =
leo(poc)(e)a by Proposition 3.11 and similarly in Xl’g(pn)(e)perf — X*(e)Pet by Proposi-
tion 4.13, the description of the isomorphism DL’L = D) on Tate parameter in Lemma 5.5
now shows that the above diagram restricts over f(c) : Doo <> A (pe)(€)a to the diagram
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Z/p"Z x D°, —— Z./p"Z x D',

l l

D’ —— D'

where the morphism on the top line is the one which is the identity on Z/p"Z. It is clear from

this description that the isomorphism extends uniquely to an isomorphism Z/p™Z x DZO —
Z/p"Z x D.,. But this means that the first diagram extends over the cusp ¢. This proves
the first part of the Theorem.

Part 2 is an immediate consequence in the limit n — oo.

Part 3 follows from the second diagram together with Theorem 3.1 and Proposition 4.13
which describe the maps between Tate parameter spaces in the two towers for n — co. [

6 g-expansion principles

In this section, we prove various perfectoid g-expansion principles for function on the spaces
Xpo(poc)(6>a, Xr‘l(poo) (E)a and Xp(poo)(e)a.

6.1 Detecting vanishing

The classical g-expansion principle, §1 [8], states that a modular form vanishes if and only
if its g-expansions do. The perfectoid g-expansion principle says that a function on one of
the infinite level spaces vanishes if its g-expansions do. More precisely, we prove:

Proposition 6.1 (g-expansion principle I). Let cq, ..., ¢, be a collection of cusps of X'™*
such that each connected component of X* contains at least one c;. Let U2 D — X* be the
corresponding Tate parameter spaces; Let n € NU{oc}, let T" be one of T'o(p™),T'1(p™), T'(p™)
and let D — X (€)q be the pullback. Then the map O(Xf(e),) — O(D) is injective.

Corollary 6.2. Let cg,...,c,, be a collection of cusps of X'* such that each connected
component of X* contains at least one c;. Then restriction of functions gives injective maps

O(XF, () (€)a) = [ [ Oxc[la" P~ N[L/2]

i=1

O(XE, () (€)a) = [ [ Mapeys (2, Ok [[a"/P1D)[1/p]
i=1
O(XF (oo (€)a) = | | Mape (Ko (9™), Oxc[[a"/7” 1)) [1/p].

i=1

This is basically an analogue of saying that for any affine irreducible integral variety over
K, completion at any K-point gives rise to an injection on function, which is a consequence
of Krull’s Intersection Theorem. The perfectoid situation is a bit more subtle, since Krull’s
Intersection Theorem requires Noetherianess. In the above case, one can descent to the
Noetherian situation using that modular curves are already defined over Z,,.

Our proof of the Proposition is in two steps: We first consider AT, (=) (0), where it is easy
to reduce to the Noetherian case. In a second step, we then show that restriction of functions
from A% )(€)a to A7 (poo)(O)a is injective, which is a straight-forward computation on

Iy (p>
power series. We start with the case e = 0. For this we need the following Lemma:

37



Lemma 6.3. Let R be any ring. Let w € R be a non-zero-divisor. Let ¢ : A — B be a
morphism of R-algebras. Assume that B is a flat R-algebra_and that ¢ : Ajw — B/w is
injective. Then the induced map on w-adic completions ¢ : A — B is injective.

Proof. Since w is a non-zero-divisor, for any n the following sequence is short exact:

0— R/w = R/@w" — R/w"™ ' =0

After tensoring with A — B, the five-lemma applies (lusing that B is flat over R) and shows
inductively that A/w™ — B/w™ is injective for all n. The Lemma follows in the limit. O

Proposition 6.4. Let cg,...,cn be a collection of cusps of X* such that each connected
component of X* contains at least one ¢;. Let U™ D — X* and U™, Spf O [[q]] — X* be
the corresponding Tate parameter space.

Let T by any of the level structures T' = To(p™),T1(p™),T(p") for any n € Ng U {oo} and
let Y = X(0)q. Lett : D — Y be the pullback of the Tate parameter space LT D — X*.
to Y. Then the map of sections O(Y) — O(D) is injective.

Proof. 1t therefore suffices to consider the cases of I' = I'g and I' = I'y: The case of I' = I'(p™)
then follows from Lemma 3.19.

Let therefore T' = T'g(p™) or T';(p™). We first we note that the space ) has a canonical
formal model ) = X%(0),, which is affine, say 9 = Spf(R). We first consider the case of
n < oco. Let Cq,...,C; be the cusps of * lying over the cusps cq,...,c, of X* and let
UL, Spf Ok [[q]] — 2 be the completion along the subscheme of cusps Cj, ..., C;. It suffices
to show that the map on global sections ¢ : R — []/", Ok»|[g]] is injective: Indeed, it then
follows that the induced map R — [[i~, Ok (q/@") for any k € N is injective, and after
tensoring with K, in the direct limit over k these glue to the morphism O(D) — O()).

Lemma 6.3 further reduces us to proving that the reduction R/p — []/"; O /pllq]] is
injective. This reduction can be interpreted as follows: Let Y = X7, pord in the case
of I' = T'g(p"), and Y = Igo, /p pn ora i the case of I' = I'1(p") and write Y = Spec(4).
Then the reduction of ¢ can be identified with the morphism A — [[ Ok /p™([g]] given by the
global section of the completion U Spf(Ok /p™[[¢]]) — Y at the cusps Ci, ..., ;. Since Ok /p
is a flat F, = [F,[(n]-algebra, it now suffices to prove that for Yr, = Spec(Ar,) any one of

schemes Xg* ., I8g ,n ora> completion at the cusps gives an injection Ap, — Hé:l F,[lq]].

We are now in the situation of smooth varieties over a field, and by considering each
connected component separately, it suffices to prove that for an integral Noetherian ring A,
completion at any maximal ideal m C A gives an injection A — Ay, But this follows from
Krull’s intersection theorem, which says that A, < Ay is injective.

This finishes the prove in the case of n < oco. The case of n = co can be deduced
in the limit: For any m € N let 9),, = }fl’io(pm)(()) or P, = .’{’I’il(pm)(O). We first set up
some more technical notation: For each m < oo, the morphism O(9,,) — [[ Ok|[¢]] is not
only continuous for the (p, ¢)-adic topology on the target, but also for the p-adic topology,
as can be seen by taking the limit of the reduction mod p”. We obtain a corresponding
morphism of formal schemes LI Spf(Ox|[g]], (p)) — Vm where the notation on the left hand
side emphasizes that we now consider the p-adic topology. Composing with the morphism
LSpf (O (q/w/P")) — Spf(Ok|[d]], (p)) for any k € N gives on the generic fibre the affinoid
restricted Tate parameter spaces LID(|q| < \wl/pk>|) — X[(0) from before.

Passing to n = oo, consider for any m € NU {oo} the pullback of p-adic formal schemes

Om ——— Dm

| |

L Spf(Oklldl], (p)) —— X~
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By Lemma 3.10, the same argument as before, namely covering D, by the affinoid spaces
D (lq| < \wl/pk), shows that it suffices to prove that O(P ) = O(D) is injective. By
Lemma 6.3, it suffices to prove this for the reduction mod p. But since Do — Yy is
the projective limit of the ®,, — 2., this follows in the direct limit from the fact that
O(Dm)/p — O(Dm)/p is injective, as we have already seen. O

The proof of Proposition 6.1 is completed by the following Proposition, which is also
relevant on its own for applications to modular forms:

Lemma 6.5. Let Y — X* be one of the following adic spaces: XFQ(}?")’ Xy (pm) s lel(p")r
X, (pn)s X (pnys Xrpn)» each for any n € No U{oo}. Then the open immersion Y(0) — YV(e)

on global section gives an injection O(Y(€)) — O(Y(0)).
The proof boils down to the following Lemma:

Lemma 6.6. Let A be any ring, let 0 # w € A be a non-zero-divisor and let H € A be such
that its image in A/w is a non-zero-divisor. Endow A with the w-adic topology. Then

X—wX
_—

o AX)/(XH — ) A(X)/(XH 1)

is an injective morphism. Similarly for ¢ : A[X])/(XH — w) 2owX, AX))/(XH -1).

Proof. We first note that the assumption on H € A implies that H is a non-zero-divisor in
any A/w"™: This follows from Lemma 6.3 applied to the morphism of A-algebras A RNy

Suppose f = 3. a, X™ is in the kernel of A(X) — A(X)/(XH —w) % A(X)/(XH —1).
Then there is g = > b, X™ such that

f@X)=> a,@"X" = (XH-1)g=(XH-1)) b, X"
Reducing mod w™, we see that
ap+ -+ amorwm XM = (XH-1) anX" mod w™
By comparing leading coefficients in A/w™[X], and since H is not a zero-divisor mod @™,

we conclude that by = 0 mod w™ for k > m — 1.
Consequently, there are elements ¢, = b,, /™ € A for all m and we have in A[[X]]

bm m X—wX m
f/::(XH—w)ZmeX FET(XH 1)) by X

Thus f'(wX) = f(wX) in A[[X]] which implies f' = f since w is not a zero divisor.

It remains to prove that 3 ¢,;,, X" converges in A(X). To see this, we use that f € A(X).
For every k € N there is Ny such that v(a,,) > k for all m > Nj. In particular, we then
have v(@w™ay,) > k + m for all m > Nj. Consequently, for all m > N

ag+ - F o wm I XT = (XH - 1) meXm mod @™k,
This shows that v(b;,—1) > m + k, and thus v(¢,,) > k for all m > Ng. Thus ) ¢, X™ €

A(X) as desired.
We conclude that f is already in (XH — w)A(X). Thus ¢ is injective. O
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proof of Proposition 6.5. We prove instead: Let 4 — X be an open in one of the following
formal schemes: Xp,ny , Xr,(pn), Xrn), each for any n € Ng U {oo}. Then the natural
map 2(0) — Y(e) induces an injection

O(e)ls) = O(D(0)])- (8)

The statement is local, so we may without loss of generality assume that Ll is an
affine open on which w is trivial. Then 9(e)|y = Spf(R(X)/(X Ha—p°)) and Y(0)|y =
Spf(R(X)/(X Ha—1)) and the map 2 (e)|y — D(0)]g is given on functions by

o R(X)/(X Ha—p°) 2275 R(X)/(X Ha—1).
We would like to apply Lemma 6.6 with @ = p°. This requires that w is a non-zero-divisor,
which is clear since { is flat over Spf(Of), and that Ha is a non-zero divisor in R/p°.

To see the latter, we may without loss of generality assume that the function Ha on the
open i C Q) already arises by base change from an irreducible affine open subscheme of Xp, .
But then Ha is the flat base change of a non-zero function on an integral affine scheme, and
thus is a non-zero divisor.

Thus Lemma 6.6 applies, which shows that the morphism (8) is injective. The Propo-
sition in the case of YV = X (pn), AT, (p»), Ar(pr) follows from the first part because on any
affine open formal subschemes Spf(R) C 9), the functions on the adic generic fibre are given
by tensoring with ®¢,. K. The cases of the spaces J = &} (pn)> AT, (pn)> A (pny by using the

0
open cover X* = X*(0) U X since the boundary is disjoint of the supersingular locus. O

This finishes the proof of Proposition ?7? O

6.2 Tate traces and detecting the level

While the transition from I'g(p>°) to I'(p>°) is controlled by the Galois action, the transition
of To(p) to T'y(p™°) can be controlled by normalised Tate traces, as discussed in [11], I11.2.4
and [1], Proposition 6.2. We recall:

Proposition 6.7 ([11], Corollary I11.2.23). The normalised Tate traces

tlﬁ'n’m : O%*(p_”e) — O%*(p—me) [1/]?]
of the morphism ¢ : X*(p~"¢) — X*(p~™¢€) for 0 < m < n € N in the limit n — oo give rise
to compatible continuous morphisms

trm: Oy oo (@0 = O (pmmey, [1/p]-

Proof. This is [11], Corollary II1.2.23, except that we use X* instead of X: This is possible
since in contrast to the higher genus Siegel moduli spaces, the minimal compactification of
the modular curve X* is a smooth formal scheme, and thus Corollary II1.2.22 applies over
all of X*, not just over X, which means that the proof of I11.2.23 goes through for X*. O

Definition 6.8. On the generic fibre, the trace tr,, for m = 0 extends to a K-linear Tate
trace map of sheaves on X*(¢) that we denote by

tr: Qs (€)a OX*(e)

To(pe°)

(here the sheaves are tacitly pushed forward to %;O(M along the maps of locally ringed spaces
AP (o) (€)a = Xy () and AR ) — X§ (), but we omit this from notation).
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Over the Tate parameter spaces, the normalised trace can be described as follows:

Proposition 6.9. Let ¢ be any cusp of X*(€), with corresponding Tate parameter space

D — Xli‘o(pm)(e). Then the normalised Tate trace fits into a commutative diagram

O(AF, (poe) (€)a) — O(Des) > amg™
meZL[1/p]>o
ltr tr l
O(X*(e)) — O(D) Z anq”
mEZso

where the map on the right is given by forgetting all coefficients a,, for m & N.

Proof. By continuity, the trace morphism is uniquely determined by the finite level nor-
malised traces tr,,0 @ Ox«(p-ne) = Ox=(¢)[1/p]. It thus suffices to determine the effect on
g-expansions at finite level: By Lemma 2.10, this is the trace of the morphism Og[[q]] —
Oklldl], ¢ = ¢*" , or equivalently O[[q]] — Ok|[¢"/*"]], ¢ — q. Since the extension of
fraction fields is Galois with Galois automorphisms ¢'/?" — ¢'/?" an for d € Z/p"Z, this

trace is
2 1 k k) L
Zapn o 72 @ (L G 4o+ G )™ Zamq

since 1 + C]fn +---+ pn = 0 unless p"|k. This gives the desired description. O

Corollary 6.10 (g-expansion principle II). Let f € O(X} (wcy(€)a) on AL (o) (€)a- Then
for any n € Z>o U {0}, the following are equivalent:

1. f 1s already a function on X7 . )( €)a-

2. The g-expansion of f at every cusp is already in O[[¢*/?"])[1/p] C Ox[[¢*/*~])[1/p].

3. On every connected component of leo(pn)(e)a there is at least one cusp at which the
q-expansion of f is already in Ox[[¢"/?"])[1/p] C Ok [l¢*/*~)[1/p].

Proof. 1t suffices to prove that 3 implies 1. A function f € O(&} (,«)(€)a) is already in
O(X*(¢)) if and only if tr(f) = f. By Theorem ??, this can be checked on sufficiently many
g-expansions. By Proposition 6.9, at any given cusp we have tr(f) = f if and only if the
g-expansion at that cusp is already in Ok|[q]][1/p]. O

We also have the following analogue in characteristic p:

Corollary 6.11 (g-expansion principle II, characteristic p version). Let f € O(X*(e)Pet).
Then the following are equivalent:

1. f is already a function on X'*(e€).
2. The g-expansion of f at every cusp is already in O [[q]][1/@] € O [[¢*?7 )1 /).

3. On every connected component of X' (e) there is at least one cusp at which the g-
expansion of f is already in O [[q]][1/w] € Ok [[¢Y/?” ][1/].

The analogous statement for X, (e)perf — Xl’g(poo)(e) is also true.

Ig(p“)

Proof. Like the proof of the last Corollary, using Proposition 7?7, Proposition ?? and Lemma 7?7
O
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6.3 Detecting boundedness

Proposition 6.12 (q-expansion principle III). A function f € (’)(lel(poo)(O)) =5 is con-
tained in S° = OF (A} (p==)(0)) if and only if its q-ezpansion is in Oxl[¢*?™]]. In particular,
the natural morphism

92 8°/p = Map,(Zp, O [p[[a"/?”]])

is injective. The analogous statement for Xl'z(pm)(O)perf = Spa(S”,5°°) is also true: An

element of S° is in S°° if and only if its q-expansion is in Oy [[¢*/P” ]].
Note: Should replace proof by part of the proof of Proposition 9.32

Proof. We will prove that ¢ is injective, this implies all other statements, which can be seen
as follows: Let f € S be any element with g-expansion in Ok /p[[¢*/P”]]. Since S is Tate,
there is an integer n > 1 such that p” f € S°. Assume that n is minimal. Then since n > 1,
the g-expansion of p"f is in Mapcts(Zp,pC’)K[[ql/pm]]). Since ¢ is injective, this implies
p"f € pS°, thus p"~ ' f € §°. The only way this doesn’t contradict n > 1 being minimal is
that n =1, hence f € S°.

In fact, it suffices to prove that the kernel of ¢ is almost zero: If this is the case, then
any f € S° that lands in the kernel is such that for any @ € O with 0 < || < 1 one has
wf € pS°, thus |f| < |w||p|, then we must have |f| < |p| and thus f € pS°.

It just suffices to prove that ¢ is almost injective. To see this, we first consider the
case of the tame level modular curve over Z, and its ordinary locus %2p(0). Recall that
this is smooth, since its open in x;p, and in particular normal. It is moreover affine, say
X7, (0) = Spf(R) and as a consequence of the normality we have A7 (0) = Spa(R[1/p], R),
ie R is the ring of bounded functions on Xz*p (0). The classical g-expansion principle, more
precisely Proposition 2.7.1 in [8] then guarantees that

R°/p — Ok /pl[4]] 9)

is injective (the way this is proved is that one multiplies f mod p with powers of E,_; until
the function extends to the whole modular curve, ie is a classical modular form, without
changing the g-expansion mod p. Then the classical g-expansion principle applies).

We now switch to the situation over K° and consider the tame curve X"*(0) with its
perfection X’*(0)Perf. Since X’*(0) = Spf(Sy) is affine, we have X"*(0)Pf = Spf(speT)
where SP°" is the completion of lim - So. Write X7 (0)Perf = Spa(A’, A”°), then S, = A”°.
By taking the direct limit over relative Frobenius of 9, we thus get an almost injection

A” @ — O [w[ld""7]],

meaning that the kernel is almost zero. It remains to base change from X’*(0)P*™f to

ng(poo)(O)perf = Spa(A’Ig(pn),A'IJg(pn)). But since this is a tilde-limit of the finite étale
morphisms

1% )(E)perf _ Spa(A ) N X*(E)perf,

’ / A/+

Ig(p™ Ig(p=)> “Ig(p>)
we have A}Z(pw) Jw = liﬂA’;;(pn) /. The natural morphism of perfectoid O%.,-algebras
O [[¢/77]) @ 4 A/I-;(p") — Map((Z/p"Z)*, Oy [[¢*/?7]]) is an almost isomorphism be-
cause it is an isomorphism generically. Therefore, by tensoring with the almost flat A'"-

algebra A'IJ;(pn) and taking direct limits, we conclude that

At

IQ(P‘”)/W = Maplc(Z;;OKb/w[[ql/pmH)

is almost injective. This implies that the map S°/p — Map,.(Z,, O /p[[g*/?"]]) is almost
injective, as we wanted to see. O
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6.4 Tate parameter spaces on the good reduction locus
There is also a g-expansion principle for extending from the good reduction locus X9¢ to X.

Definition 6.13. Consider Ok ((g)) with the p-adic topology, that is we suppress the topol-
ogy coming from q. Let Ok ({(¢q)) := Ok ((q))" be the p-adic completion. These are the power
series of the form

Ox{{g))y={f= Zanq"(’)K[[qil]] | an, € Ok such that |a,| — 0 for n — —oo}.
neZ

Lemma 6.14. The pair (K ®o, Oxkl[q]], Okl[q]]) considered with the p-adic topology is a
sous-perfectoid Huber pair in the sense of [13]. In particular, the space D = Spa(K ®o,.
Ok|[q]], Ok[g]]) is a sous-perfectoid adic space. We have D(|q| < 1) = D and D(|q| > 1) =
Spa(K ®o0, Ok {{q)), Ok {(q))). These open subspaces cover D up to a rank 2-point.

Proposition 6.15. For every cusp there is a morphism D — X'*.
1. On D C D, this is an isomorphism onto D C X*.
2. The fibre over X9% C X* is D(|q| > 1) = Spa(K ®0, Orx{(q)), Ox{{(q)))
3. The morphisms UD — X* and X9 < X* cover X*.

Theorem 6.16 (g-expansion principle IV). Let cg, ..., ¢y be a collection of cusps of X* such
that each connected component contains at least one cusp. Then a function on X9 extends
to all of X* if and only if its q-expansion at the Tate parameter space D(|q| > 1) — X94
over each ¢; is already in Ok|[q]] ® K C Ok ((q)). In this case, the extension is unique.

Proof. Restrict to X*(0), then show that diagram is Cartesian by reducing mod p™. O
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